CAS算法(Compare And Swap),是原子操作的一种, CAS算法是一种有名的无锁算法。无锁编程,即不使用锁的情况下实现多线程之间的变量同步,也就是在没有线程被阻塞的情况下实现变量的同步,所以也叫非阻塞同步(Non-blocking Synchronization)。可用于在多线程编程中实现不被打断的数据交换操作,从而避免多线程同时改写某一数据时由于执行顺序不确定性以及中断的不可预知性产生的数据不一致问题。
该操作通过将内存中的值与指定数据进行比较,当数值一样时将内存中的数据替换为新的值。
Go中的CAS操作是借用了CPU提供的原子性指令来实现。CAS操作修改共享变量时候不需要对共享变量加锁,而是通过类似乐观锁的方式进行检查,本质还是不断的占用CPU 资源换取加锁带来的开销(比如上下文切换开销)。
~~~go
package main
import (
"fmt"
"sync"
"sync/atomic"
)
var (
counter int32 //计数器
wg sync.WaitGroup //信号量
)
func main() {
threadNum := 5
wg.Add(threadNum)
for i := 0; i < threadNum; i++ {
go incCounter(i)
}
wg.Wait()
}
func incCounter(index int) {
defer wg.Done()
spinNum := 0
for {
// 原子操作
old := counter
ok := atomic.CompareAndSwapInt32(&counter, old, old+1)
if ok {
break
} else {
spinNum++
}
}
fmt.Printf("thread,%d,spinnum,%d\n", index, spinNum)
}
~~~
当主函数main首先创建了5个信号量,然后开启五个线程执行incCounter方法,incCounter内部执行, 使用cas操作递增counter的值,`atomic.CompareAndSwapInt32`具有三个参数,第一个是变量的地址,第二个是变量当前值,第三个是要修改变量为多少,该函数如果发现传递的old值等于当前变量的值,则使用第三个变量替换变量的值并返回true,否则返回false。
这里之所以使用无限循环是因为在高并发下每个线程执行CAS并不是每次都成功,失败了的线程需要重写获取变量当前的值,然后重新执行CAS操作。读者可以把线程数改为10000或者更多就会发现输出`thread,5329,spinnum,1`其中这个1就说明该线程尝试了两个CAS操作,第二次才成功。
因此呢, go中CAS操作可以有效的减少使用锁所带来的开销,但是需要注意在高并发下这是使用cpu资源做交换的。
- Golang基础
- Go中new与make的区别
- Golang中除了加Mutex锁以外还有哪些方式安全读写共享变量
- 无缓冲Chan的发送和接收是否同步
- Golang并发机制以及它所使用的CSP并发模型.
- Golang中常用的并发模型
- Go中对nil的Slice和空Slice的处理是一致的吗
- 协程和线程和进程的区别
- Golang的内存模型中为什么小对象多了会造成GC压力
- Go中数据竞争问题怎么解决
- 什么是channel,为什么它可以做到线程安全
- Golang垃圾回收算法
- GC的触发条件
- Go的GPM如何调度
- 并发编程概念是什么
- Go语言的栈空间管理是怎么样的
- Goroutine和Channel的作用分别是什么
- 怎么查看Goroutine的数量
- Go中的锁有哪些
- 怎么限制Goroutine的数量
- Channel是同步的还是异步的
- Goroutine和线程的区别
- Go的Struct能不能比较
- Go的defer原理是什么
- Go的select可以用于什么
- Context包的用途是什么
- Go主协程如何等其余协程完再操作
- Go的Slice如何扩容
- Go中的map如何实现顺序读取
- Go中CAS是怎么回事
- Go中的逃逸分析是什么
- Go值接收者和指针接收者的区别
- Go的对象在内存中是怎样分配的
- 栈的内存是怎么分配的
- 堆内存管理怎么分配的
- 在Go函数中为什么会发生内存泄露
- G0的作用
- Go中的锁如何实现
- Go中的channel的实现
- 栈的内存是怎么分配的2
- 堆内存管理怎么分配的2
- Go中的map的实现
- Go中的http包的实现原理
- Goroutine发生了泄漏如何检测
- Go函数返回局部变量的指针是否安全
- Go中两个Nil可能不相等吗
- Goroutine和KernelThread之间是什么关系
- 为何GPM调度要有P
- 如何在goroutine执行一半就退出协程
- Mysql基础
- Mysql索引用的是什么算法
- Mysql事务的基本要素
- Mysql的存储引擎
- Mysql事务隔离级别
- Mysql高可用方案有哪些
- Mysql中utf8和utf8mb4区别
- Mysql中乐观锁和悲观锁区别
- Mysql索引主要是哪些
- Mysql联合索引最左匹配原则
- 聚簇索引和非聚簇索引区别
- 如何查询一个字段是否命中了索引
- Mysql中查询数据什么情况下不会命中索引
- Mysql中的MVCC是什么
- Mvcc和Redolog和Undolog以及Binlog有什么不同
- Mysql读写分离以及主从同步
- InnoDB的关键特性
- Mysql如何保证一致性和持久性
- 为什么选择B+树作为索引结构
- InnoDB的行锁模式
- 哈希(hash)比树(tree)更快,索引结构为什么要设计成树型
- 为什么索引的key长度不能太长
- Mysql的数据如何恢复到任意时间点
- Mysql为什么加了索引可以加快查询
- Explain命令有什么用
- Redis基础
- Redis的数据结构及使用场景
- Redis持久化的几种方式
- Redis的LRU具体实现
- 单线程的Redis为什么快
- Redis的数据过期策略
- 如何解决Redis缓存雪崩问题
- 如何解决Redis缓存穿透问题
- Redis并发竞争key如何解决
- Redis的主从模式和哨兵模式和集群模式区别
- Redis有序集合zset底层怎么实现的
- 跳表的查询过程是怎么样的,查询和插入的时间复杂度
- 网络协议基础
- TCP和UDP有什么区别
- TCP中三次握手和四次挥手
- TCP的LISTEN状态是什么
- 常见的HTTP状态码有哪些
- 301和302有什么区别
- 504和500有什么区别
- HTTPS和HTTP有什么区别
- Quic有什么优点相比Http2
- Grpc的优缺点
- Get和Post区别
- Unicode和ASCII以及Utf8的区别
- Cookie与Session异同
- Client如何实现长连接
- Http1和Http2和Grpc之间的区别是什么
- Tcp中的拆包和粘包是怎么回事
- TFO的原理是什么
- TIME_WAIT的作用
- 网络的性能指标有哪些