在互联网流量传输只使用了几个网络协议。使用`IPv4`进行路由,使用`TCP`进行连接层面的流量控制,使用`SSL/TLS`协议实现传输安全,使用`DNS`进行域名解析,使用`HTTP`进行应用数据的传输。
但是使用Http进行应用数据的传输,却是在不断的改变,那么Http1和Http2和Grpc之间的区别是什么,我们下面分析下.
通常影响一个 HTTP 网络请求的因素主要有两个:带宽和延迟。
* 带宽
如果说我们还停留在拨号上网的阶段,带宽可能会成为一个比较严重影响请求的问题,但是现在网络基础建设已经使得带宽得到极大的提升,我们不再会担心由带宽而影响网速,那么就只剩下延迟了。
* 延迟
浏览器阻塞(HOL blocking):浏览器会因为一些原因阻塞请求。浏览器对于同一个域名,同时只能有 4 个连接(这个根据浏览器内核不同可能会有所差异),超过浏览器最大连接数限制,后续请求就会被阻塞。
DNS 查询(DNS Lookup):浏览器需要知道目标服务器的 IP 才能建立连接。将域名解析为 IP 的这个系统就是 DNS。这个通常可以利用DNS缓存结果来达到减少这个时间的目的。
建立连接(Initial connection):HTTP 是基于 TCP 协议的,浏览器最快也要在第三次握手时才能捎带 HTTP 请求报文,达到真正的建立连接,但是这些连接无法复用会导致每次请求都经历三次握手和慢启动。三次握手在高延迟的场景下影响较明显,慢启动则对文件类大请求影响较大。
然而,HTTP2并不是对HTTP1协议的重写,相对于HTTP1,HTTP2 的侧重点主要在性能。其中请求方法,状态码和语义和HTTP1都是相同的,可以使用与 HTTP1相同的 API(可能有一些小的添加)来表示协议。
HTTP2主要有两个规范组成:
* `Hypertext Transfer Protocol version 2`(超文本传输协议版本 2)
* `HPACK - HTTP2`的头压缩 (HPACK 是一种头部压缩算法)
HTTP2和HTTP1相比的新特性包括:
* 新的二进制格式(Binary Format)
HTTP1.x的解析是基于文本。基于文本协议的格式解析存在天然缺陷,文本的表现形式有多样性,要做到健壮性考虑的场景必然很多,二进制则不同,只认0和1的组合。基于这种考虑HTTP2.0的协议解析决定采用二进制格式,实现方便且健壮。
* 多路复用(MultiPlexing)
连接共享,即每一个request都是是用作连接共享机制的。一个request对应一个id,这样一个连接上可以有多个request,每个连接的request可以随机的混杂在一起,接收方可以根据request的 id将request再归属到各自不同的服务端请求里面。
* Header压缩
Header压缩,如上文中所言,对前面提到过HTTP1.x的header带有大量信息,而且每次都要重复发送,HTTP2.0使用encoder来减少需要传输的header大小,通讯双方各自cache一份header fields表,既避免了重复header的传输,又减小了需要传输的大小。
* 服务端推送(server push)
服务端推送(server push),同SPDY一样,HTTP2.0也具有server push功能。
Grpc的设计目标是在任何环境下运行,支持可插拔的负载均衡,跟踪,运行状况检查和身份验证。它不仅支持数据中心内部和跨数据中心的服务调用,它也适用于分布式计算的最后一公里,将设备,移动应用程序和浏览器连接到后端服务,同时,它也是高性能的,而 HTTP2 恰好支持这些。
而Grpc是基于http2的.
* HTTP2天然的通用性满足各种设备,场景.
* HTTP2的性能相对来说也是很好的,除非你需要极致的性能.
* HTTP2的安全性非常好,天然支持 SSL.
* HTTP2的鉴权也非常成熟.
* Grpc基于 HTTP2 多语言实现也更容易.
- Golang基础
- Go中new与make的区别
- Golang中除了加Mutex锁以外还有哪些方式安全读写共享变量
- 无缓冲Chan的发送和接收是否同步
- Golang并发机制以及它所使用的CSP并发模型.
- Golang中常用的并发模型
- Go中对nil的Slice和空Slice的处理是一致的吗
- 协程和线程和进程的区别
- Golang的内存模型中为什么小对象多了会造成GC压力
- Go中数据竞争问题怎么解决
- 什么是channel,为什么它可以做到线程安全
- Golang垃圾回收算法
- GC的触发条件
- Go的GPM如何调度
- 并发编程概念是什么
- Go语言的栈空间管理是怎么样的
- Goroutine和Channel的作用分别是什么
- 怎么查看Goroutine的数量
- Go中的锁有哪些
- 怎么限制Goroutine的数量
- Channel是同步的还是异步的
- Goroutine和线程的区别
- Go的Struct能不能比较
- Go的defer原理是什么
- Go的select可以用于什么
- Context包的用途是什么
- Go主协程如何等其余协程完再操作
- Go的Slice如何扩容
- Go中的map如何实现顺序读取
- Go中CAS是怎么回事
- Go中的逃逸分析是什么
- Go值接收者和指针接收者的区别
- Go的对象在内存中是怎样分配的
- 栈的内存是怎么分配的
- 堆内存管理怎么分配的
- 在Go函数中为什么会发生内存泄露
- G0的作用
- Go中的锁如何实现
- Go中的channel的实现
- 栈的内存是怎么分配的2
- 堆内存管理怎么分配的2
- Go中的map的实现
- Go中的http包的实现原理
- Goroutine发生了泄漏如何检测
- Go函数返回局部变量的指针是否安全
- Go中两个Nil可能不相等吗
- Goroutine和KernelThread之间是什么关系
- 为何GPM调度要有P
- 如何在goroutine执行一半就退出协程
- Mysql基础
- Mysql索引用的是什么算法
- Mysql事务的基本要素
- Mysql的存储引擎
- Mysql事务隔离级别
- Mysql高可用方案有哪些
- Mysql中utf8和utf8mb4区别
- Mysql中乐观锁和悲观锁区别
- Mysql索引主要是哪些
- Mysql联合索引最左匹配原则
- 聚簇索引和非聚簇索引区别
- 如何查询一个字段是否命中了索引
- Mysql中查询数据什么情况下不会命中索引
- Mysql中的MVCC是什么
- Mvcc和Redolog和Undolog以及Binlog有什么不同
- Mysql读写分离以及主从同步
- InnoDB的关键特性
- Mysql如何保证一致性和持久性
- 为什么选择B+树作为索引结构
- InnoDB的行锁模式
- 哈希(hash)比树(tree)更快,索引结构为什么要设计成树型
- 为什么索引的key长度不能太长
- Mysql的数据如何恢复到任意时间点
- Mysql为什么加了索引可以加快查询
- Explain命令有什么用
- Redis基础
- Redis的数据结构及使用场景
- Redis持久化的几种方式
- Redis的LRU具体实现
- 单线程的Redis为什么快
- Redis的数据过期策略
- 如何解决Redis缓存雪崩问题
- 如何解决Redis缓存穿透问题
- Redis并发竞争key如何解决
- Redis的主从模式和哨兵模式和集群模式区别
- Redis有序集合zset底层怎么实现的
- 跳表的查询过程是怎么样的,查询和插入的时间复杂度
- 网络协议基础
- TCP和UDP有什么区别
- TCP中三次握手和四次挥手
- TCP的LISTEN状态是什么
- 常见的HTTP状态码有哪些
- 301和302有什么区别
- 504和500有什么区别
- HTTPS和HTTP有什么区别
- Quic有什么优点相比Http2
- Grpc的优缺点
- Get和Post区别
- Unicode和ASCII以及Utf8的区别
- Cookie与Session异同
- Client如何实现长连接
- Http1和Http2和Grpc之间的区别是什么
- Tcp中的拆包和粘包是怎么回事
- TFO的原理是什么
- TIME_WAIT的作用
- 网络的性能指标有哪些