合规国际互联网加速 OSASE为企业客户提供高速稳定SD-WAN国际加速解决方案。 广告
SVD(Singular Value Decomposition)奇异值分解,可以用来简化数据,去除噪声,提高算法的结果。 ###一、SVD与推荐系统 下图由餐馆的菜和品菜师对这些菜的意见组成,品菜师可以采用1到5之间的任意一个整数来对菜评级,如果品菜师没有尝过某道菜,则评级为0 ![](https://box.kancloud.cn/2016-02-25_56ceab81a66e3.jpg) 建立一个新文件svdRec.py并加入如下代码: ~~~ def loadExData(): return[[0, 0, 0, 2, 2], [0, 0, 0, 3, 3], [0, 0, 0, 1, 1], [1, 1, 1, 0, 0], [2, 2, 2, 0, 0], [5, 5, 5, 0, 0], [1, 1, 1, 0, 0]] ~~~ ~~~ >>> import svdRec >>> Data=svdRec.loadExData() >>> Data [[0, 0, 0, 2, 2], [0, 0, 0, 3, 3], [0, 0, 0, 1, 1], [1, 1, 1, 0, 0], [2, 2, 2, 0, 0], [5, 5, 5, 0, 0], [1, 1, 1, 0, 0]] >>> U,Sigma,VT=linalg.svd(Data) >>> Sigma array([ 9.64365076e+00, 5.29150262e+00, 8.05799147e-16, 2.43883353e-16, 2.07518106e-17]) ~~~ 我们可以发现得到的特征值,前两个比其他的值大很多,所以可以将最后三个值去掉,因为他们的影响很小。 可以看出上图中前三个人,喜欢烤牛肉和手撕猪肉,这些菜都是美式烧烤餐馆才有的菜,这两个特征值可以分别对应到美食BBQ和日式食品两类食品上,所以可以认为这三个人属于一类用户,下面四个人属于一类用户,这样推荐就很简单了。 建立一个新文件svdRec.py并加入如下代码: ~~~ def loadExData(): return[[1, 1, 1, 0, 0], [2, 2, 2, 0, 0], [1, 1, 1, 0, 0], [5, 5, 5, 0, 0], [1, 1, 0, 2, 2], [0, 0, 0, 3, 3], [0, 0, 0, 1, 1]] ~~~ SVD分解: ~~~ >>> reload(svdRec) <module 'svdRec' from 'svdRec.py'> >>> Data=svdRec.loadExData() >>> Data [[1, 1, 1, 0, 0], [2, 2, 2, 0, 0], [1, 1, 1, 0, 0], [5, 5, 5, 0, 0], [1, 1, 0, 2, 2], [0, 0, 0, 3, 3], [0, 0, 0, 1, 1]] >>> U,Sigma,VT=linalg.svd(Data) >>> Sigma array([ 9.72140007e+00, 5.29397912e+00, 6.84226362e-01, 1.67441533e-15, 3.39639411e-16]) ~~~ 我们可以发现得到的特征值,前3个比其他的值大很多,所以可以将最后2个值去掉,因为他们的影响很小。 ![](https://box.kancloud.cn/2016-02-25_56ceab81be07b.jpg) ![](https://box.kancloud.cn/2016-02-25_56ceab81e7cf7.jpg) ![](https://box.kancloud.cn/2016-02-25_56ceab8205c63.jpg) 上面例子就可以将原始数据用如下结果近似: ![](https://box.kancloud.cn/2016-02-25_56ceab821891e.jpg) ###二、基于协同过滤的推荐引擎 协同过滤(collaborative filtering)是通过将用户与其他用户的数据进行对比来实现推荐的。 1.相似度计算 ![](https://box.kancloud.cn/2016-02-25_56ceab82322cd.jpg) ~~~ from numpy import * from numpy import linalg as la def eulidSim(inA,inB): return 1.0/(1.0+la.norm(inA,inB)) def pearsSim(inA,inB): if len(inA<3):return 1.0 return 0.5+0.5*corrcoef(inA,inB,rowvar=0)[0][1] def cosSim(inA,inB): num=float(inA.T*inB) denom=la.norm(inA)*la.norm(inB) return 0.5+0.5*(num/denom) ~~~ 2.基于物品的相似度与基于用户的相似度 当用户数目很多时,采用基于物品的相似度计算方法更好。 3.示例:基于物品相似度的餐馆菜肴推荐引擎 ![](https://box.kancloud.cn/2016-02-25_56ceab825f61a.jpg) ~~~ from numpy import * from numpy import linalg as la def loadExData(): return[[1, 1, 1, 0, 0], [2, 2, 2, 0, 0], [1, 1, 1, 0, 0], [5, 5, 5, 0, 0], [1, 1, 0, 2, 2], [0, 0, 0, 3, 3], [0, 0, 0, 1, 1]] def loadExData2(): return[[0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 5], [0, 0, 0, 3, 0, 4, 0, 0, 0, 0, 3], [0, 0, 0, 0, 4, 0, 0, 1, 0, 4, 0], [3, 3, 4, 0, 0, 0, 0, 2, 2, 0, 0], [5, 4, 5, 0, 0, 0, 0, 5, 5, 0, 0], [0, 0, 0, 0, 5, 0, 1, 0, 0, 5, 0], [4, 3, 4, 0, 0, 0, 0, 5, 5, 0, 1], [0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 4], [0, 0, 0, 2, 0, 2, 5, 0, 0, 1, 2], [0, 0, 0, 0, 5, 0, 0, 0, 0, 4, 0], [1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0]] def ecludSim(inA,inB): return 1.0/(1.0 + la.norm(inA - inB)) def pearsSim(inA,inB): if len(inA) < 3 : return 1.0 return 0.5+0.5*corrcoef(inA, inB, rowvar = 0)[0][1] def cosSim(inA,inB): num = float(inA.T*inB) denom = la.norm(inA)*la.norm(inB) return 0.5+0.5*(num/denom) #计算在给定相似度计算方法的条件下,用户对物品的估计评分值 #standEst()函数中:参数dataMat表示数据矩阵,user表示用户编号,simMeas表示相似度计算方法,item表示物品编号 def standEst(dataMat,user,simMeas,item): n=shape(dataMat)[1] #shape用于求矩阵的行列 simTotal=0.0; ratSimTotal=0.0 for j in range(n): userRating=dataMat[user,j] if userRating==0:continue #若某个物品评分值为0,表示用户未对物品评分,则跳过,继续遍历下一个物品 #寻找两个用户都评分的物品 overLap=nonzero(logical_and(dataMat[:,item].A>0,dataMat[:,j].A>0))[0] if len(overLap)==0:similarity=0 else: similarity=simMeas(dataMat[overLap,item],dataMat[overLap,j]) #print'the %d and%d similarity is: %f' %(item,j,similarity) simTotal+=similarity ratSimTotal+=similarity*userRating if simTotal==0: return 0 else: return ratSimTotal/simTotal def recommend(dataMat,user,N=3,simMeas=cosSim,estMethod=standEst): #寻找未评级的物品 unratedItems=nonzero(dataMat[user,:].A==0)[1] if len(unratedItems)==0: return 'you rated everything' itemScores=[] for item in unratedItems: estimatedScore=estMethod(dataMat,user,simMeas,item) #对每一个未评分物品,调用standEst()来产生该物品的预测得分 itemScores.append((item,estimatedScore)) #该物品的编号和估计得分值放入一个元素列表itemScores中 #对itemScores进行从大到小排序,返回前N个未评分物品 return sorted(itemScores,key=lambda jj:jj[1],reverse=True)[:N] def svdEst(dataMat, user, simMeas, item): n = shape(dataMat)[1] simTotal = 0.0; ratSimTotal = 0.0 U,Sigma,VT = la.svd(dataMat) Sig4 = mat(eye(4)*Sigma[:4]) #arrange Sig4 into a diagonal matrix xformedItems = dataMat.T * U[:,:4] * Sig4.I #create transformed items for j in range(n): userRating = dataMat[user,j] if userRating == 0 or j==item: continue similarity = simMeas(xformedItems[item,:].T,\ xformedItems[j,:].T) print 'the %d and %d similarity is: %f' % (item, j, similarity) simTotal += similarity ratSimTotal += similarity * userRating if simTotal == 0: return 0 else: return ratSimTotal/simTotal ~~~ 其中dataMat[:,item].A,表示找出item列,因为是matrix,用.A转成array,logical_and,其实就是找出最item列和j列都>0,只有都大于0才会是true,nonzero会给出其中不为0的index。 进行SVD分解: ~~~ >>>from numpy import linalg as la >>> U,Sigma,VT=la.svd(mat(svdRec.loadExData2())) >>> Sigma array([ 1.38487021e+01, 1.15944583e+01, 1.10219767e+01, 5.31737732e+00, 4.55477815e+00, 2.69935136e+00, 1.53799905e+00, 6.46087828e-01, 4.45444850e-01, 9.86019201e-02, 9.96558169e-17]) ~~~ 如何决定r?有个定量的方法是看多少个奇异值可以达到90%的能量,其实和PCA一样,由于奇异值其实是等于data×dataT特征值的平方根,所以总能量就是特征值的和 ~~~ >>> Sig2=Sigma**2 >>> sum(Sig2) 541.99999999999932 ~~~ 而取到前4个时,发现总能量大于90%,因此r=4 ~~~ >>> sum(Sig2[:3]) 500.50028912757909 ~~~ SVD分解的关键在于,降低了user的维度,从n变到了4 ~~~ def svdEst(dataMat, user, simMeas, item): n = shape(dataMat)[1] simTotal = 0.0; ratSimTotal = 0.0 U,Sigma,VT = la.svd(dataMat) Sig4 = mat(eye(4)*Sigma[:4]) #arrange Sig4 into a diagonal matrix xformedItems = dataMat.T * U[:,:4] * Sig4.I #create transformed items for j in range(n): userRating = dataMat[user,j] if userRating == 0 or j==item: continue similarity = simMeas(xformedItems[item,:].T,\ xformedItems[j,:].T) print 'the %d and %d similarity is: %f' % (item, j, similarity) simTotal += similarity ratSimTotal += similarity * userRating if simTotal == 0: return 0 else: return ratSimTotal/simTotal ~~~ 其中关键一步,dataMat.T * U[:,:4] * Sig4.I 将m×n的dataMat用特征值缩放转换为n×4的item和user类的矩阵 ~~~ >>> myMat=mat(svdRec.loadExData2()) >>> myMat matrix([[0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 5], [0, 0, 0, 3, 0, 4, 0, 0, 0, 0, 3], [0, 0, 0, 0, 4, 0, 0, 1, 0, 4, 0], [3, 3, 4, 0, 0, 0, 0, 2, 2, 0, 0], [5, 4, 5, 0, 0, 0, 0, 5, 5, 0, 0], [0, 0, 0, 0, 5, 0, 1, 0, 0, 5, 0], [4, 3, 4, 0, 0, 0, 0, 5, 5, 0, 1], [0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 4], [0, 0, 0, 2, 0, 2, 5, 0, 0, 1, 2], [0, 0, 0, 0, 5, 0, 0, 0, 0, 4, 0], [1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0]]) >>> svdRec.recommend(myMat,1,estMethod=svdRec.svdEst) the 0 and 3 similarity is: 0.490950 the 0 and 5 similarity is: 0.484274 the 0 and 10 similarity is: 0.512755 the 1 and 3 similarity is: 0.491294 the 1 and 5 similarity is: 0.481516 the 1 and 10 similarity is: 0.509709 the 2 and 3 similarity is: 0.491573 the 2 and 5 similarity is: 0.482346 the 2 and 10 similarity is: 0.510584 the 4 and 3 similarity is: 0.450495 the 4 and 5 similarity is: 0.506795 the 4 and 10 similarity is: 0.512896 the 6 and 3 similarity is: 0.743699 the 6 and 5 similarity is: 0.468366 the 6 and 10 similarity is: 0.439465 the 7 and 3 similarity is: 0.482175 the 7 and 5 similarity is: 0.494716 the 7 and 10 similarity is: 0.524970 the 8 and 3 similarity is: 0.491307 the 8 and 5 similarity is: 0.491228 the 8 and 10 similarity is: 0.520290 the 9 and 3 similarity is: 0.522379 the 9 and 5 similarity is: 0.496130 the 9 and 10 similarity is: 0.493617 [(4, 3.3447149384692283), (7, 3.3294020724526967), (9, 3.328100876390069)] ~~~