合规国际互联网加速 OSASE为企业客户提供高速稳定SD-WAN国际加速解决方案。 广告
# 损失曲线(loss) ## 使用方法: ~~~ # 画出损失曲线 AA.visualization_loss() ~~~ ![](https://box.kancloud.cn/ace750f7b4e3d011c4546140eb895ab5_640x480.png) ## 完整例子 ~~~ # pip install AADeepLearning from AADeepLearning import AADeepLearning from AADeepLearning.datasets import mnist from AADeepLearning.datasets import np_utils # import numpy as np # np.random.seed(0) # mnist数据集已经被划分成了60,000个训练集,10,000个测试集的形式,如果数据不存在则自动下载 (x_train, y_train), (x_test, y_test) = mnist.load_data() # 第一个维度是样本数目,第二维度是通道数表示颜色通道数,第三维度是高,第四个维度是宽 x_train = x_train.reshape(x_train.shape[0], 1, 28, 28) x_test = x_test.reshape(x_test.shape[0], 1, 28, 28) # 将x_train, x_test的数据格式转为float32 x_train = x_train.astype('float32') x_test = x_test.astype('float32') # 归一化,将值映射到 0到1区间 x_train /= 255 x_test /= 255 # 因为是10分类,所以将类别向量(从0到10的整数向量)映射为二值类别矩阵,相当于将向量用one-hot重新编码 y_train = np_utils.to_categorical(y_train, 10) y_test = np_utils.to_categorical(y_test, 10) # 网络配置文件 config = { # 初始学习率 "learning_rate": 0.001, # 优化策略: sgd/momentum/rmsprop/adam "optimizer": "adam", # 使用动量的梯度下降算法做优化,可以设置这一项,默认值为 0.9 ,一般不需要调整 "momentum_coefficient": 0.9, # 训练多少次 "number_iteration": 1000, # 每次用多少个样本训练 "batch_size": 64, # 迭代多少次打印一次信息 "display": 100, } # 网络结构,数据将从上往下传播 net = [ { # 层名,无限制 "name": "flatten_1", # 层类型,将数据展平为适合神经网络的结构,用于输入层或者卷积层和全连接层中间。 (60000, 1, 28, 28) ——> (784, 60000) "type": "flatten" }, { # 层名 "name": "fully_connected_1", # 层类型,全连接层 "type": "fully_connected", # 神经元个数 "neurons_number": 256, # 权重初始化方式 msra/xavier/gaussian "weight_init": "msra" }, { # 层名 "name": "relu_1", # 层类型(激活层) 可选,relu,sigmoid,tanh, "type": "relu" }, { # 层名 "name": "fully_connected_2", # 层类型,全连接层 "type": "fully_connected", # 神经元个数, 因为是10分类,所以神经元个数为10 "neurons_number": 10, # 权重初始化方式 msra/xavier/gaussian "weight_init": "msra" }, { # 层名 "name": "softmax_1", # 层类型,分类层,最终输出十分类的概率分布 "type": "softmax" } ] # 定义模型,传入网络结构和配置项 AA = AADeepLearning(net=net, config=config) # 训练模型 AA.train(x_train=x_train, y_train=y_train) # 画出损失曲线 AA.visualization_loss() # 使用测试集预测,返回概率分布和准确率, score:样本在各个分类上的概率, accuracy:准确率 score, accuracy = AA.predict(x_test=x_test, y_test=y_test) print("test set accuracy:", accuracy) ~~~