# 全文检索
* 全文检索不同于特定字段的模糊查询,使用全文检索的效率更高,并且能够对于中文进行分词处理
* haystack:django的一个包,可以方便地对model里面的内容进行索引、搜索,设计为支持whoosh,solr,Xapian,Elasticsearc四种全文检索引擎后端,属于一种全文检索的框架
* whoosh:纯Python编写的全文搜索引擎,虽然性能比不上sphinx、xapian、Elasticsearc等
* jieba:一款免费的中文分词包
## 操作
### 1.安装所需包
```text
pip install django-haystack
pip install whoosh
pip install jieba
```
### 2.修改settings.py文件
* 添加应用
```text
# Application definition
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'myapp',
'tinymce',
'haystack',
]
```
* 添加搜索引擎
```text
# 添加搜索引擎
HAYSTACK_CONNECTIONS = {
'default': {
'ENGINE': 'haystack.backends.whoosh_cn_backend.WhooshEngine',
'PATH': os.path.join(BASE_DIR, 'whoosh_index'),
}
}
#自动生成索引
HAYSTACK_SIGNAL_PROCESSOR = 'haystack.signals.RealtimeSignalProcessor'
```
### 3.在项目的urls.py中添加url
```text
urlpatterns = [
....
url(r'^search/$',include('haystack.urls')),
]
```
#### 4.在应用目录myapp下奖励search\_indexes.py文件
```text
from haystack import indexes
from .models import Grades
class GradesIndex(indexes.SearchIndex,indexes.Indexable):
text = indexes.CharField(document=True,use_template=True)
def get_model(self):
return Grades
def index_queryset(self, using=None):
return self.get_model().objects.all()
```
### 5.在目录“templates/search/indexes/应用名称”下创建"模型类名称\_text"文件
```text
# grades_text.txt,列出要对那些内容进行检索
{{object.gname}}
{{object.gdate}}
```
### 6.在目录"templates/search"下创建search.html
```text
<!DOCTYPE html>
<html>
<head>
<title></title>
</head>
<body>
{% if query %}
<h3>搜索结果如下:</h3>
{% for result in page.object_list %}
<a href="/{{ result.object.id }}/">{{ result.object.sname }}</a><br/>
{% empty %}
<p>啥也没找到</p>
{% endfor %}
{% if page.has_previous or page.has_next %}
<div>
{% if page.has_previous %}<a href="?q={{ query }}&page={{ page.previous_page_number }}">{% endif %}« 上一页{% if page.has_previous %}</a>{% endif %}
|
{% if page.has_next %}<a href="?q={{ query }}&page={{ page.next_page_number }}">{% endif %}下一页 »{% if page.has_next %}</a>{% endif %}
</div>
{% endif %}
{% endif %}
</body>
</html>
```
### 7.建立ChineseAnalyzer.py文件
* 在python路径里,保存在haystack的安装文件夹下,路径如:"/lib/site-packages/haystack/backends"
```text
import jieba
from whoosh.analysis import Tokenizer, Token
class ChineseTokenizer(Tokenizer):
def __call__(self, value, positions=False, chars=False,
keeporiginal=False, removestops=True,
start_pos=0, start_char=0, mode='', **kwargs):
t = Token(positions, chars, removestops=removestops, mode=mode,
**kwargs)
seglist = jieba.cut(value, cut_all=True)
for w in seglist:
t.original = t.text = w
t.boost = 1.0
if positions:
t.pos = start_pos + value.find(w)
if chars:
t.startchar = start_char + value.find(w)
t.endchar = start_char + value.find(w) + len(w)
yield t
def ChineseAnalyzer():
return ChineseTokenizer()
```
### 8.复制whoosh\_backend.py文件,改名为whoosh\_cn\_backend.py {#8复制whooshbackendpy文件,改名为whooshcnbackendpy}
* 注意:复制出来的文件名,末尾会有一个空格,记得要删除这个空格
```text
from .ChineseAnalyzer import ChineseAnalyzer
查找
analyzer=StemmingAnalyzer()
改为
analyzer=ChineseAnalyzer()
```
### 9.生成索引 {#9生成索引}
* 初始化索引数据
```text
python manage.py rebuild_index
```
### 10.在模板中创建搜索栏 {#10在模板中创建搜索栏}
```text
<form method='get' action="/search/" target="_blank">
<input type="text" name="q">
<input type="submit" value="查询">
</form>
```