ThinkChat2.0新版上线,更智能更精彩,支持会话、画图、阅读、搜索等,送10W Token,即刻开启你的AI之旅 广告
#奇偶调序 ## 题目描述 输入一个整数数组,调整数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半部分。要求时间复杂度为O(n)。 ### 分析与解法 最容易想到的办法是从头扫描这个数组,每碰到一个偶数,拿出这个数字,并把位于这个数字后面的所有数字往前挪动一位。挪完之后在数组的末尾有一个空位,然后把该偶数放入这个空位。由于每碰到一个偶数,需要移动O(n)个数字,所以这种方法总的时间复杂度是O(n^2),不符合题目要求。 事实上,若把奇数看做是小的数,偶数看做是大的数,那么按照题目所要求的奇数放在前面偶数放在后面,就相当于小数放在前面大数放在后面,联想到快速排序中的partition过程,不就是通过一个主元把整个数组分成大小两个部分么,小于主元的小数放在前面,大于主元的大数放在后面。 而partition过程有以下两种实现: - 一头一尾两个指针往中间扫描,如果头指针遇到的数比主元大且尾指针遇到的数比主元小,则交换头尾指针所分别指向的数字; - 一前一后两个指针同时从左往右扫,如果前指针遇到的数比主元小,则后指针右移一位,然后交换各自所指向的数字。 类似这个partition过程,奇偶排序问题也可以分别借鉴partition的两种实现解决。 为何?比如partition的实现一中,如果最终是为了让整个序列元素从小到大排序,那么头指针理应指向的就是小数,而尾指针理应指向的就是大数,故当头指针指的是大数且尾指针指的是小数的时候就不正常,此时就当交换。 #### 解法一 借鉴partition的实现一,我们可以考虑维护两个指针,一个指针指向数组的第一个数字,我们称之为头指针,向右移动;一个指针指向最后一个数字,称之为尾指针,向左移动。 这样,两个指针分别从数组的头部和尾部向数组的中间移动,如果第一个指针指向的数字是偶数而第二个指针指向的数字是奇数,我们就交换这两个数字。 因为按照题目要求,最终是为了让奇数排在数组的前面,偶数排在数组的后面,所以头指针理应指向的就是奇数,尾指针理应指向的就是偶数,故当头指针指向的是偶数且尾指针指向的是奇数时,我们就当立即交换它们所指向的数字。 思路有了,接下来,写代码实现: ```cpp //判断是否为奇数 bool IsOddNumber(int data) { return data & 1 == 1; } //奇偶互换 void OddEvenSort(int *pData, unsigned int length) { if (pData == NULL || length == 0) return; int *pBegin = pData; int *pEnd = pData + length - 1; while (pBegin < pEnd) { //如果pBegin指针指向的是奇数,正常,向右移 if (IsOddNumber(*pBegin)) { pBegin++; } //如果pEnd指针指向的是偶数,正常,向左移 else if (!IsOddNumber(*pEnd)) { pEnd--; } else { //否则都不正常,交换 //swap是STL库函数,声明为void swap(int& a, int& b); swap(*pBegin, *pEnd); } } } ``` 本方法通过头尾两个指针往中间扫描,一次遍历完成所有奇数偶数的重新排列,时间复杂度为O(n)。 #### 解法二 我们先来看看快速排序partition过程的第二种实现是具体怎样的一个原理。 partition分治过程,每一趟排序的过程中,选取的主元都会把整个数组排列成一大一小的序列,继而递归排序完整个数组。如下伪代码所示: PARTITION(A, p, r) 1 x ← A[r] 2 i ← p - 1 3 for j ← p to r - 1 4 do if A[j] ≤ x 5 then i ← i + 1 6 exchange A[i] <-> A[j] 7 exchange A[i + 1] <-> A[r] 8 return i + 1 举个例子如下:现要对数组data = {2, 8,7, 1, 3, 5, 6, 4}进行快速排序,为了表述方便,令`i`指向数组头部前一个位置,`j`指向数组头部元素,`j`在前,`i`在后,双双从左向右移动。 ① j 指向元素2时,i 也指向元素2,2与2互换不变 i p/j 2 8 7 1 3 5 6 4(主元) ② 于是j 继续后移,直到指向了1,1 <= 4,于是i++,i 指向8,故j 所指元素1 与 i 所指元素8 位置互换: i j 2 1 7 8 3 5 6 4 ③ j 继续后移,指到了元素3,3 <= 4,于是同样i++,i 指向7,故j 所指元素3 与 i 所指元素7 位置互换: i j 2 1 3 8 7 5 6 4 ④ j 一路后移,没有再碰到比主元4小的元素: i j 2 1 3 8 7 5 6 4 ⑤ 最后,A[i + 1] <-> A[r],即8与4交换,所以,数组最终变成了如下形式: 2 1 3 4 7 5 6 8 这样,快速排序第一趟完成。就这样,4把整个数组分成了俩部分,2 1 3,7 5 6 8,再递归对这两部分分别进行排序。 借鉴partition的上述实现,我们也可以维护两个指针i和j,一个指针指向数组的第一个数的前一个位置,我们称之为后指针i,向右移动;一个指针指向数组第一个数,称之为前指针j,也向右移动,且前指针j先向右移动。如果前指针j指向的数字是奇数,则令i指针向右移动一位,然后交换i和j指针所各自指向的数字。 因为按照题目要求,最终是为了让奇数排在数组的前面,偶数排在数组的后面,所以i指针理应指向的就是奇数,j指针理应指向的就是偶数,所以,当j指针指向的是奇数时,不正常,我们就当让i++,然后交换i和j指针所各自指向的数字。 参考代码如下: ```c //奇偶互换 void OddEvenSort2(int data[], int lo, int hi) { int i = lo - 1; for (int j = lo; j < hi; j++) { //data[j]指向奇数,交换 if ( IsOddNumber(data[j]) ) { i = i + 1; swap(data[i], data[j]); } } swap(data[i + 1], data[hi]); } ``` 此解法一前一后两个指针同时向右扫描的过程中,也是一次遍历完成奇数偶数的重新排列,故时间复杂度也为O(n)。 ### 举一反三 一个未排序整数数组,有正负数,重新排列使负数排在正数前面,并且要求不改变原来的正负数之间相对顺序,比如: input: 1,7,-5,9,-12,15 ans: -5,-12,1,7,9,15 要求时间复杂度O(n),空间O(1)。 分析:如果本题没有这个要求“并且要求不改变原来的正负数之间相对顺序”,那么同奇偶数排序是一道题,但加上这个不能改变正负数之间的相对顺序后,便使得问题变得比较艰难了,若有兴趣,读者可以参考这篇论文《STABLE MINIMUM SPACE PARTITIONING IN LINEAR TIME》。