# 7.2 切片
- [7.2.1 概念](#721__1)
- [\[\](https://github.com/Unknwon/the-way-to-go\_ZH\_CN/blob/master/eBook/07.2.md#722-将切片传递给函数)7.2.2 将切片传递给函数](#httpsgithubcomUnknwonthewaytogo_ZH_CNblobmastereBook072md722722__2)
- [\[\](https://github.com/Unknwon/the-way-to-go\_ZH\_CN/blob/master/eBook/07.2.md#723-用-make-创建一个切片)7.2.3 用 make() 创建一个切片](#httpsgithubcomUnknwonthewaytogo_ZH_CNblobmastereBook072md723make723__make__3)
- [\[\](https://github.com/Unknwon/the-way-to-go\_ZH\_CN/blob/master/eBook/07.2.md#724-new-和-make-的区别)7.2.4 new() 和 make() 的区别](#httpsgithubcomUnknwonthewaytogo_ZH_CNblobmastereBook072md724newmake724_new__make__4)
- [\[\](https://github.com/Unknwon/the-way-to-go\_ZH\_CN/blob/master/eBook/07.2.md#725-多维-切片)7.2.5 多维 切片](#httpsgithubcomUnknwonthewaytogo_ZH_CNblobmastereBook072md725725___5)
- [\[\](https://github.com/Unknwon/the-way-to-go\_ZH\_CN/blob/master/eBook/07.2.md#726-bytes-包)7.2.6 bytes 包](#httpsgithubcomUnknwonthewaytogo_ZH_CNblobmastereBook072md726bytes726_bytes__6)
## 7.2.1 概念
切片(slice)是对数组一个连续片段的引用(该数组我们称之为相关数组,通常是匿名的),所以切片是一个引用类型(因此更类似于 C/C++ 中的数组类型,或者 Python 中的 list 类型)。这个片段可以是整个数组,或者是由起始和终止索引标识的一些项的子集。需要注意的是,终止索引标识的项不包括在切片内。切片提供了一个相关数组的动态窗口。
切片是可索引的,并且可以由 `len()` 函数获取长度。
给定项的切片索引可能比相关数组的相同元素的索引小。和数组不同的是,切片的长度可以在运行时修改,最小为 0 最大为相关数组的长度:切片是一个 **长度可变的数组**。
切片提供了计算容量的函数 `cap()` 可以测量切片最长可以达到多少:它等于切片的长度 + 数组除切片之外的长度。如果 s 是一个切片,`cap(s)` 就是从 `s[0]` 到数组末尾的数组长度。切片的长度永远不会超过它的容量,所以对于 切片 s 来说该不等式永远成立:`0 <= len(s) <= cap(s)`。
多个切片如果表示同一个数组的片段,它们可以共享数据;因此一个切片和相关数组的其他切片是共享存储的,相反,不同的数组总是代表不同的存储。数组实际上是切片的构建块。
**优点** 因为切片是引用,所以它们不需要使用额外的内存并且比使用数组更有效率,所以在 Go 代码中 切片比数组更常用。
声明切片的格式是: `var identifier []type`(不需要说明长度)。
一个切片在未初始化之前默认为 nil,长度为 0。
切片的初始化格式是:`var slice1 []type = arr1[start:end]`。
这表示 slice1 是由数组 arr1 从 start 索引到 `end-1` 索引之间的元素构成的子集(切分数组,start:end 被称为 slice 表达式)。所以 `slice1[0]` 就等于 `arr1[start]`。这可以在 arr1 被填充前就定义好。
如果某个人写:`var slice1 []type = arr1[:]` 那么 slice1 就等于完整的 arr1 数组(所以这种表示方式是`arr1[0:len(arr1)]` 的一种缩写)。另外一种表述方式是:`slice1 = &arr1`。
`arr1[2:]` 和 `arr1[2:len(arr1)]` 相同,都包含了数组从第二个到最后的所有元素。
`arr1[:3]` 和 `arr1[0:3]` 相同,包含了从第一个到第三个元素(不包括第三个)。
如果你想去掉 slice1 的最后一个元素,只要 `slice1 = slice1[:len(slice1)-1]`。
一个由数字 1、2、3 组成的切片可以这么生成:`s := [3]int{1,2,3}` 甚至更简单的 `s := []int{1,2,3}`。
`s2 := s[:]` 是用切片组成的切片,拥有相同的元素,但是仍然指向相同的相关数组。
一个切片 s 可以这样扩展到它的大小上限:`s = s[:cap(s)]`,如果再扩大的话就会导致运行时错误(参见第 7.7 节)。
对于每一个切片(包括 string),以下状态总是成立的:
```
s == s[:i] + s[i:] // i是一个整数且: 0 <= i <= len(s)
len(s) < cap(s)
```
切片也可以用类似数组的方式初始化:`var x = []int{2, 3, 5, 7, 11}`。这样就创建了一个长度为 5 的数组并且创建了一个相关切片。
切片在内存中的组织方式实际上是一个有 3 个域的结构体:指向相关数组的指针,切片 长度以及切片容量。下图给出了一个长度为 2,容量为 4 的切片。
- `y[0] = 3` 且 `y[1] = 5`。
- 切片 `y[0:4]` 由 元素 3, 5, 7 和 11 组成。
[![](https://box.kancloud.cn/da516048a0ad5a4ac5f053a3f94d8695_1116x491.)](https://github.com/Unknwon/the-way-to-go_ZH_CN/blob/master/images/7.2_fig7.2.png?raw=true)
示例 7.7 [array\_slices.go](https://github.com/Unknwon/the-way-to-go_ZH_CN/blob/master/eBook/examples/chapter_7/array_slices.go)
```
package main
import "fmt"
func main() {
var arr1 [6]int
var slice1 []int = arr1[2:5] // item at index 5 not included!
// load the array with integers: 0,1,2,3,4,5
for i := 0; i < len(arr1); i++ {
arr1[i] = i
}
// print the slice
for i := 0; i < len(slice1); i++ {
fmt.Printf("Slice at %d is %d\n", i, slice1[i])
}
fmt.Printf("The length of arr1 is %d\n", len(arr1))
fmt.Printf("The length of slice1 is %d\n", len(slice1))
fmt.Printf("The capacity of slice1 is %d\n", cap(slice1))
// grow the slice
slice1 = slice1[0:4]
for i := 0; i < len(slice1); i++ {
fmt.Printf("Slice at %d is %d\n", i, slice1[i])
}
fmt.Printf("The length of slice1 is %d\n", len(slice1))
fmt.Printf("The capacity of slice1 is %d\n", cap(slice1))
// grow the slice beyond capacity
//slice1 = slice1[0:7 ] // panic: runtime error: slice bound out of range
}
```
输出:
```
Slice at 0 is 2
Slice at 1 is 3
Slice at 2 is 4
The length of arr1 is 6
The length of slice1 is 3
The capacity of slice1 is 4
Slice at 0 is 2
Slice at 1 is 3
Slice at 2 is 4
Slice at 3 is 5
The length of slice1 is 4
The capacity of slice1 is 4
```
如果 s2 是一个 slice,你可以将 s2 向后移动一位 `s2 = s2[1:]`,但是末尾没有移动。切片只能向后移动,`s2 = s2[-1:]`会导致编译错误。切片不能被重新分片以获取数组的前一个元素。
**注意** 绝对不要用指针指向 slice。切片本身已经是一个引用类型,所以它本身就是一个指针!!
问题 7.2: 给定切片 `b:= []byte{'g', 'o', 'l', 'a', 'n', 'g'}`,那么 `b[1:4]`、`b[:2]`、`b[2:]` 和 `b[:]` 分别是什么?
## 7.2.2 将切片传递给函数
如果你有一个函数需要对数组做操作,你可能总是需要把参数声明为切片。当你调用该函数时,把数组分片,创建为一个 切片引用并传递给该函数。这里有一个计算数组元素和的方法:
```
func sum(a []int) int {
s := 0
for i := 0; i < len(a); i++ {
s += a[i]
}
return s
}
func main {
var arr = [5]int{0, 1, 2, 3, 4}
sum(arr[:])
}
```
## 7.2.3 用 make() 创建一个切片
当相关数组还没有定义时,我们可以使用 make() 函数来创建一个切片 同时创建好相关数组:`var slice1 []type = make([]type, len)`。
也可以简写为 `slice1 := make([]type, len)`,这里 `len` 是数组的长度并且也是 `slice` 的初始长度。
所以定义 `s2 := make([]int, 10)`,那么 `cap(s2) == len(s2) == 10`。
make 接受 2 个参数:元素的类型以及切片的元素个数。
如果你想创建一个 slice1,它不占用整个数组,而只是占用以 len 为个数个项,那么只要:`slice1 := make([]type, len, cap)`。
make 的使用方式是:`func make([]T, len, cap)`,其中 cap 是可选参数。
所以下面两种方法可以生成相同的切片:
```
make([]int, 50, 100)
new([100]int)[0:50]
```
下图描述了使用 make 方法生成的切片的内存结构:[![](https://box.kancloud.cn/eafc4d03ed78eccbb1e978937f260e30_902x465.)](https://github.com/Unknwon/the-way-to-go_ZH_CN/blob/master/images/7.2_fig7.2.1.png?raw=true)
示例 7.8 [make\_slice.go](https://github.com/Unknwon/the-way-to-go_ZH_CN/blob/master/eBook/examples/chapter_7/make_slice.go)
```
package main
import "fmt"
func main() {
var slice1 []int = make([]int, 10)
// load the array/slice:
for i := 0; i < len(slice1); i++ {
slice1[i] = 5 * i
}
// print the slice:
for i := 0; i < len(slice1); i++ {
fmt.Printf("Slice at %d is %d\n", i, slice1[i])
}
fmt.Printf("\nThe length of slice1 is %d\n", len(slice1))
fmt.Printf("The capacity of slice1 is %d\n", cap(slice1))
}
```
输出:
```
Slice at 0 is 0
Slice at 1 is 5
Slice at 2 is 10
Slice at 3 is 15
Slice at 4 is 20
Slice at 5 is 25
Slice at 6 is 30
Slice at 7 is 35
Slice at 8 is 40
Slice at 9 is 45
The length of slice1 is 10
The capacity of slice1 is 10
```
因为字符串是纯粹不可变的字节数组,它们也可以被切分成 切片。
练习 7.4: fobinacci\_funcarray.go: 为练习 7.3 写一个新的版本,主函数调用一个使用序列个数作为参数的函数,该函数返回一个大小为序列个数的 Fibonacci 切片。
## 7.2.4 new() 和 make() 的区别
看起来二者没有什么区别,都在堆上分配内存,但是它们的行为不同,适用于不同的类型。
- new(T) 为每个新的类型T分配一片内存,初始化为 0 并且返回类型为\*T的内存地址:这种方法 **返回一个指向类型为 T,值为 0 的地址的指针**,它适用于值类型如数组和结构体(参见第 10 章);它相当于 `&T{}`。
- make(T) **返回一个类型为 T 的初始值**,它只适用于3种内建的引用类型:切片、map 和 channel(参见第 8 章,第 13 章)。
换言之,new 函数分配内存,make 函数初始化;下图给出了区别:
[![](https://box.kancloud.cn/87c54420defb00223f84d3c5137e4713_727x596.)](https://github.com/Unknwon/the-way-to-go_ZH_CN/blob/master/images/7.3_fig7.3.png?raw=true)
在图 7.3 的第一幅图中:
```
var p *[]int = new([]int) // *p == nil; with len and cap 0
p := new([]int)
```
在第二幅图中, `p := make([]int, 0)` ,切片 已经被初始化,但是指向一个空的数组。
以上两种方式实用性都不高。下面的方法:
```
var v []int = make([]int, 10, 50)
```
或者
```
v := make([]int, 10, 50)
```
这样分配一个有 50 个 int 值的数组,并且创建了一个长度为 10,容量为 50 的 切片 v,该 切片 指向数组的前 10 个元素。
**问题 7.3** 给定 `s := make([]byte, 5)`,len(s) 和 cap(s) 分别是多少?`s = s[2:4]`,len(s) 和 cap(s) 又分别是多少?
**问题 7.4** 假设 `s1 := []byte{'p', 'o', 'e', 'm'}` 且 `s2 := d[2:]`,s2 的值是多少?如果我们执行 `s2[1] == 't'`,s1 和 s2 现在的值又分配是多少?
## 7.2.5 多维 切片
和数组一样,切片通常也是一维的,但是也可以由一维组合成高维。通过分片的分片(或者切片的数组),长度可以任意动态变化,所以 Go 语言的多维切片可以任意切分。而且,内层的切片必须单独分配(通过 make 函数)。
## 7.2.6 bytes 包
类型 `[]byte` 的切片十分常见,Go 语言有一个 bytes 包专门用来解决这种类型的操作方法。
bytes 包和字符串包十分类似(参见第 4.7 节)。而且它还包含一个十分有用的类型 Buffer:
```
import "bytes"
type Buffer struct {
...
}
```
这是一个长度可变的 bytes 的 buffer,提供 Read 和 Write 方法,因为读写长度未知的 bytes 最好使用 buffer。
Buffer 可以这样定义:`var buffer bytes.Buffer`。
或者使用 new 获得一个指针:`var r *bytes.Buffer = new(bytes.Buffer)`。
或者通过函数:`func NewBuffer(buf []byte) *Buffer`,创建一个 Buffer 对象并且用 buf 初始化好;NewBuffer 最好用在从 buf 读取的时候使用。
**通过 buffer 串联字符串**
类似于 Java 的 StringBuilder 类。
在下面的代码段中,我们创建一个 buffer,通过 `buffer.WriteString(s)` 方法将字符串 s 追加到后面,最后再通过`buffer.String()` 方法转换为 string:
```
var buffer bytes.Buffer
for {
if s, ok := getNextString(); ok { //method getNextString() not shown here
buffer.WriteString(s)
} else {
break
}
}
fmt.Print(buffer.String(), "\n")
```
这种实现方式比使用 `+=` 要更节省内存和 CPU,尤其是要串联的字符串数目特别多的时候。
**练习 7.5** 给定切片 sl,将一个 `[]byte` 数组追加到 sl 后面。写一个函数 `Append(slice, data []byte) []byte`,该函数在 sl 不能存储更多数据的时候自动扩容。
**练习 7.6** 把一个缓存 buf 分片成两个 切片:第一个是前 n 个 bytes,后一个是剩余的,用一行代码实现。
- 前言
- 第一部分:产品介绍
- 第1章:产品概述
- 1.2 语言的主要特性与发展的环境和影响因素
- 第2章:安装与运行环境
- 2.1 平台与架构
- 2.2 Go 环境变量
- 2.3 在 Linux 上安装 Go
- 2.4 在 Mac OS X 上安装 Go
- 2.5 在 Windows 上安装 Go
- 2.6 安装目录清单
- 2.7 Go 运行时(runtime)
- 2.8 Go 解释器
- 第3章:编辑器、集成开发环境与其它工具
- 3.1 Go 开发环境的基本要求
- 3.2 编辑器和集成开发环境
- 3.3 调试器
- 3.4 构建并运行 Go 程序
- 3.5 格式化代码
- 3.6 生成代码文档
- 3.7 其它工具
- 3.8 Go 性能说明
- 3.9 与其它语言进行交互
- 产品概述
- 第二部分:语言的核心结构与技术
- 第4章:基本结构和基本数据类型
- 4.1 文件名、关键字与标识符
- 4.2 Go 程序的基本结构和要素
- 4.3 常量
- 4.4 变量
- 4.5 基本类型和运算符
- 4.6 字符串
- 4.7 strings 和 strconv 包
- 4.8 时间和日期
- 4.9 指针
- 第5章:控制结构
- 5.1 if-else 结构
- 5.2 测试多返回值函数的错误
- 5.3 switch 结构
- 5.4 for 结构
- 5.5 Break 与 continue
- 5.6 标签与 goto
- 第6章:函数(function)
- 6.1 介绍
- 6.2 函数参数与返回值
- 6.3 传递变长参数
- 6.4 defer 和追踪
- 6.5 内置函数
- 6.6 递归函数
- 6.7 将函数作为参数
- 6.8 闭包
- 6.9 应用闭包:将函数作为返回值
- 6.10 使用闭包调试
- 6.11 计算函数执行时间
- 6.12 通过内存缓存来提升性能
- 第7章:数组与切片
- 7.1 声明和初始化
- 7.2 切片
- 7.3 For-range 结构
- 7.4 切片重组(reslice)
- 7.5 切片的复制与追加
- 7.6 字符串、数组和切片的应用
- 第8章:Map
- 8.1 声明、初始化和 make
- 8.2 测试键值对是否存在及删除元素
- 8.3 for-range 的配套用法
- 8.4 map 类型的切片
- 8.5 map 的排序
- 8.6 将 map 的键值对调
- 第9章:包(package)
- 9.1 标准库概述
- 9.2 regexp 包
- 9.3 锁和 sync 包
- 9.4 精密计算和 big 包
- 9.5 自定义包和可见性
- 9.6 为自定义包使用 godoc
- 9.7 使用 go install 安装自定义包
- 9.8 自定义包的目录结构、go install 和 go test
- 9.9 通过 Git 打包和安装
- 9.10 Go 的外部包和项目
- 9.11 在 Go 程序中使用外部库
- 第10章:结构(struct)与方法(method)
- 10.1 结构体定义
- 10.2 使用工厂方法创建结构体实例
- 10.3 使用自定义包中的结构体
- 10.4 带标签的结构体
- 10.5 匿名字段和内嵌结构体
- 10.6 方法
- 10.8 垃圾回收和 SetFinalizer
- 第11章:接口(interface)与反射(reflection)
- 11.1 接口是什么
- 11.2 接口嵌套接口
- 11.3 类型断言:如何检测和转换接口变量的类型
- 11.4 类型判断:type-switch
- 11.5 测试一个值是否实现了某个接口
- 11.6 使用方法集与接口
- 11.7 第一个例子:使用 Sorter 接口排序
- 11.8 第二个例子:读和写
- 11.9 空接口
- 11.10 反射包
- 第三部分:Go 高级编程
- 第12章 读写数据
- 12.1 读取用户的输入
- 12.2 文件读写
- 12.3 文件拷贝
- 12.4 从命令行读取参数
- 12.5 用buffer读取文件
- 12.6 用切片读写文件
- 12.7 用 defer 关闭文件
- 12.8 使用接口的实际例子:fmt.Fprintf
- 12.9 Json 数据格式
- 12.10 XML 数据格式
- 12.11 用 Gob 传输数据
- 12.12 Go 中的密码学
- 第13章 错误处理与测试
- 13.1 错误处理
- 13.2 运行时异常和 panic
- 13.3 从 panic 中恢复(Recover)
- 13.4 自定义包中的错误处理和 panicking
- 13.5 一种用闭包处理错误的模式
- 13.6 启动外部命令和程序
- 13.7 Go 中的单元测试和基准测试
- 13.8 测试的具体例子
- 13.9 用(测试数据)表驱动测试
- 13.10 性能调试:分析并优化 Go 程序
- 第14章:协程(goroutine)与通道(channel)
- 14.1 并发、并行和协程
- 14.2 使用通道进行协程间通信
- 14.3 协程同步:关闭通道-对阻塞的通道进行测试
- 14.4 使用 select 切换协程
- 14.5 通道,超时和计时器(Ticker)
- 14.6 协程和恢复(recover)
- 第15章:网络、模版与网页应用
- 15.1 tcp服务器
- 15.2 一个简单的web服务器
- 15.3 访问并读取页面数据
- 15.4 写一个简单的网页应用
- 第四部分:实际应用
- 第16章:常见的陷阱与错误
- 16.1 误用短声明导致变量覆盖
- 16.2 误用字符串
- 16.3 发生错误时使用defer关闭一个文件
- 16.5 不需要将一个指向切片的指针传递给函数
- 16.6 使用指针指向接口类型
- 16.7 使用值类型时误用指针
- 16.8 误用协程和通道
- 16.9 闭包和协程的使用
- 16.10 糟糕的错误处理
- 第17章:模式
- 17.1 关于逗号ok模式
- 第18章:出于性能考虑的实用代码片段
- 18.1 字符串
- 18.2 数组和切片
- 18.3 映射
- 18.4 结构体
- 18.5 接口
- 18.6 函数
- 18.7 文件
- 18.8 协程(goroutine)与通道(channel)
- 18.9 网络和网页应用
- 18.10 其他
- 18.11 出于性能考虑的最佳实践和建议
- 附录