合规国际互联网加速 OSASE为企业客户提供高速稳定SD-WAN国际加速解决方案。 广告
# GeoHash grid Aggregation(GeoHash网格聚合) 原文链接 : [https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-geohashgrid-aggregation.html](https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-geohashgrid-aggregation.html) 译文链接 : [http://www.apache.wiki/display/Elasticsearch](http://www.apache.wiki/display/Elasticsearch)(修改该链接为 **ApacheCN** 对应的译文链接) 贡献者 : @于永超,[ApacheCN](/display/~apachecn),[Apache中文网](/display/~apachechina) ## GeoHash grid Aggregation 在geo_point字段和组上工作的多bucket聚合将指向网格中表示单元格的bucket。生成的网格可以是稀疏的,并且只包含具有匹配数据的单元格。每个单元格使用具有用户可定义精度的[geohash](http://en.wikipedia.org/wiki/Geohash)进行标记。 * 高精度geohash具有较长的字符串长度,代表仅覆盖小面积的单元格。 * 低精度geohashes具有短的字符串长度,并且表示每个覆盖大面积的单元格。 在此聚合中使用的地理位置可以选择1到12之间的精度。 长度为12的最高精度的geohash产生覆盖小于一平方米土地的单元,因此高精度请求在RAM和结果大小方面可能非常昂贵。 请参阅下面的示例,了解如何在请求高级细节之前首先将聚合过滤到较小的地理区域。 指定字段必须为geo_point类型(这只能在映射中明确设置)并且它还可以保存一组geo_point字段,在这种情况下,聚合期间将考虑所有点。 ### Simple low-precision request ``` PUT /museums { "mappings": { "doc": { "properties": { "location": { "type": "geo_point" } } } } } POST /museums/doc/_bulk?refresh {"index":{"_id":1}} {"location": "52.374081,4.912350", "name": "NEMO Science Museum"} {"index":{"_id":2}} {"location": "52.369219,4.901618", "name": "Museum Het Rembrandthuis"} {"index":{"_id":3}} {"location": "52.371667,4.914722", "name": "Nederlands Scheepvaartmuseum"} {"index":{"_id":4}} {"location": "51.222900,4.405200", "name": "Letterenhuis"} {"index":{"_id":5}} {"location": "48.861111,2.336389", "name": "Musée du Louvre"} {"index":{"_id":6}} {"location": "48.860000,2.327000", "name": "Musée d'Orsay"} POST /museums/_search?size=0 { "aggregations" : { "large-grid" : { "geohash_grid" : { "field" : "location", "precision" : 3 } } } } ``` 响应结果 ``` { ... "aggregations": { "large-grid": { "buckets": [ { "key": "u17", "doc_count": 3 }, { "key": "u09", "doc_count": 2 }, { "key": "u15", "doc_count": 1 } ] } } } ``` ### High-precision requests 当请求详细的存储区(通常用于显示“zoomed”映射)时,应该应用像[geo_bounding_box](https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-geo-bounding-box-query.html)这样的过滤器来缩小主题区域,否则将创建并返回数百万个buckets(存储桶)。 ``` POST /museums/_search?size=0 { "aggregations" : { "zoomed-in" : { "filter" : { "geo_bounding_box" : { "location" : { "top_left" : "52.4, 4.9", "bottom_right" : "52.3, 5.0" } } }, "aggregations":{ "zoom1":{ "geohash_grid" : { "field": "location", "precision": 8 } } } } } } ``` ### Cell dimensions at the equator 下面的表显示了由geohash的各种字符串长度覆盖的单元格的度量维度。 | GeoHash length | Area width x height | | --- | --- | | 1 | 5,009.4km x 4,992.6km | | 2 | 1,252.3km x 624.1km | | 3 | 156.5km x 156km | | 4 | 39.1km x 19.5km | | 5 | 4.9km x 4.9km | | 6 | 1.2km x 609.4m | | 7 | 152.9m x 152.4m | | 8 | 38.2m x 19m | | 9 | 4.8m x 4.8m | | 10 | 1.2m x 59.5cm | | 11 | 14.9cm x 14.9cm | | 12 | 3.7cm x 1.9cm | ### Options field   强制性。 使用GeoPoints索引的字段的名称。 precision   可选的。 用于在结果中定义单元格/桶的geohash的字符串长度。 默认为5。 size    可选的。返回的geohash桶的最大数量(默认为10,000)。在处理结果时,根据所包含的文档的数量优先级排序。 shard_size  可选的。为了能够更精确地计算顶部单元格返回的最终结果,聚合默认值将从每个shard返回最大(10,(size x number-of-shards),如果这个heuristic(启发式)是不可取的, 使用这个参数可以覆盖每个碎片上数量