合规国际互联网加速 OSASE为企业客户提供高速稳定SD-WAN国际加速解决方案。 广告
# 自定义分析器 原文链接 : [https://www.elastic.co/guide/en/elasticsearch/reference/5.3/analysis-custom-analyzer.html](https://www.elastic.co/guide/en/elasticsearch/reference/5.3/getting-started.html)(修改该链接为官网对应的链接) 译文链接 : [http://www.apache.wiki/display/Elasticsearch](http://www.apache.wiki/display/Elasticsearch)/analysis-custom-analyzer.html(修改该链接为 **ApacheCN** 对应的译文链接) 贡献者 : [╮欠n1的太多](/display/~wuhongzhou),[ApacheCN](/display/~apachecn),[Apache中文网](/display/~apachechina) 当内置分析器不能满足您的需求时,您可以创建一个custom分析器,它使用以下相应的组合: * 零个或多个[字符过滤器](https://www.elastic.co/guide/en/elasticsearch/reference/5.3/analysis-custom-analyzer.html) * 一个 [分析器](https://www.elastic.co/guide/en/elasticsearch/reference/5.3/analysis-tokenizers.html) * 零个或多个[token过滤器](https://www.elastic.co/guide/en/elasticsearch/reference/5.3/analysis-custom-analyzer.html)。 ## 配置 custom(自定义)分析器接受以下的参数: | `tokenizer` | 内置或定制的标记器。 (需要) | | `char_filter` | 内置或自定义[字符过滤器](https://www.elastic.co/guide/en/elasticsearch/reference/5.3/analysis-charfilters.html)的可选阵列。 | | `filter` | 可选的内置或定制token过滤器阵列。 | | `position_increment_gap` | 在索引文本值数组时,Elasticsearch会在一个值的最后一个值和下一个值的第一个项之间插入假的“间隙”,以确保短语查询与不同数组元素的两个术语不匹配。 默认为100.有关更多信息,请参阅[position_increment_gap](https://www.elastic.co/guide/en/elasticsearch/reference/5.3/position-increment-gap.html)。 | ## 配置示例 以下是一个结合以下内容的示例: 字符过滤器 * [HTML Strip Character Filter](https://www.elastic.co/guide/en/elasticsearch/reference/5.3/analysis-htmlstrip-charfilter.html "HTML Strip Char Filter") 分词器 * [Standard Tokenizer](https://www.elastic.co/guide/en/elasticsearch/reference/5.3/analysis-standard-tokenizer.html "Standard Tokenizer") Token 分析器 * [Lowercase Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/5.3/analysis-lowercase-tokenfilter.html "Lowercase Token Filter") * [ASCII-Folding Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/5.3/analysis-asciifolding-tokenfilter.html "ASCII Folding Token Filter") ``` PUT my_index { "settings": { "analysis": { "analyzer": { "my_custom_analyzer": { "type": "custom", "tokenizer": "standard", "char_filter": [ "html_strip" ], "filter": [ "lowercase", "asciifolding" ] } } } } } POST my_index/_analyze { "analyzer": "my_custom_analyzer", "text": "Is this <b>déjà vu</b>?" } ``` ``` 上述句子将产生以下词语: ``` ``` [ is, this, deja, vu ] ``` 前面的例子使用了默认配置的tokenizer,令牌过滤器和字符过滤器,但是可以创建每个配置的版本并在自定义分析器中使用它们。以下是一个比较复杂的例子: 字符过滤器 * [Mapping Character Filter](https://www.elastic.co/guide/en/elasticsearch/reference/5.3/analysis-mapping-charfilter.html "Mapping Char Filter"),  分词器 * [Pattern Tokenizer](https://www.elastic.co/guide/en/elasticsearch/reference/5.3/analysis-pattern-tokenizer.html "Pattern Tokenizer"), 配置为分割标点符号 Token 分析器 * [Lowercase Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/5.3/analysis-lowercase-tokenfilter.html "Lowercase Token Filter")(小写分析器) * [Stop Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/5.3/analysis-stop-tokenfilter.html "Stop Token Filter")(停止分析器), 配置为使用预定义的英文停止词列表 ## 示例 ``` PUT my_index { "settings": { "analysis": { "analyzer": { "my_custom_analyzer": { "type": "custom", "char_filter": [ "emoticons" ], "tokenizer": "punctuation", "filter": [ "lowercase", "english_stop" ] } }, "tokenizer": { "punctuation": { "type": "pattern", "pattern": "[ .,!?]" } }, "char_filter": { "emoticons": { "type": "mapping", "mappings": [ ":) => _happy_", ":( => _sad_" ] } }, "filter": { "english_stop": { "type": "stop", "stopwords": "_english_" } } } } } POST my_index/_analyze { "analyzer": "my_custom_analyzer", "text": "I'm a :) person, and you?" } ``` | [![](https://img.kancloud.cn/89/2e/892e2d6105d4361c3e81583c8e019d23_14x15.jpg)](https://www.elastic.co/guide/en/elasticsearch/reference/5.3/analysis-custom-analyzer.html#CO283-1)  | 表情符号字符过滤器,标点符号化器和english_stop令牌过滤器是在相同索引设置中定义的自定义实现。 | 以上示例产生以下词语: ``` [ i'm, _happy_, person, you ] ```