ThinkChat2.0新版上线,更智能更精彩,支持会话、画图、阅读、搜索等,送10W Token,即刻开启你的AI之旅 广告
# torchvision.datasets # torchvision.datasets `torchvision.datasets`中包含了以下数据集 - MNIST - COCO(用于图像标注和目标检测)(Captioning and Detection) - LSUN Classification - ImageFolder - Imagenet-12 - CIFAR10 and CIFAR100 - STL10 `Datasets` 拥有以下`API`: `__getitem__``__len__` 由于以上`Datasets`都是 `torch.utils.data.Dataset`的子类,所以,他们也可以通过`torch.utils.data.DataLoader`使用多线程(python的多进程)。 举例说明: `torch.utils.data.DataLoader(coco_cap, batch_size=args.batchSize, shuffle=True, num_workers=args.nThreads)` 在构造函数中,不同的数据集直接的构造函数会有些许不同,但是他们共同拥有 `keyword` 参数。 In the constructor, each dataset has a slightly different API as needed, but they all take the keyword args: - `transform`: 一个函数,原始图片作为输入,返回一个转换后的图片。(详情请看下面关于`torchvision-tranform`的部分) - `target_transform` - 一个函数,输入为`target`,输出对其的转换。例子,输入的是图片标注的`string`,输出为`word`的索引。 ## MNIST ``` dset.MNIST(root, train=True, transform=None, target_transform=None, download=False) ``` 参数说明: - root : `processed/training.pt` 和 `processed/test.pt` 的主目录 - train : `True` = 训练集, `False` = 测试集 - download : `True` = 从互联网上下载数据集,并把数据集放在`root`目录下. 如果数据集之前下载过,将处理过的数据(minist.py中有相关函数)放在`processed`文件夹下。 ## COCO 需要安装[COCO API](https://github.com/pdollar/coco/tree/master/PythonAPI) ### 图像标注: ``` dset.CocoCaptions(root="dir where images are", annFile="json annotation file", [transform, target_transform]) ``` 例子: ``` import torchvision.datasets as dset import torchvision.transforms as transforms cap = dset.CocoCaptions(root = 'dir where images are', annFile = 'json annotation file', transform=transforms.ToTensor()) print('Number of samples: ', len(cap)) img, target = cap[3] # load 4th sample print("Image Size: ", img.size()) print(target) ``` 输出: ``` Number of samples: 82783 Image Size: (3L, 427L, 640L) [u'A plane emitting smoke stream flying over a mountain.', u'A plane darts across a bright blue sky behind a mountain covered in snow', u'A plane leaves a contrail above the snowy mountain top.', u'A mountain that has a plane flying overheard in the distance.', u'A mountain view with a plume of smoke in the background'] ``` ### 检测: ``` dset.CocoDetection(root="dir where images are", annFile="json annotation file", [transform, target_transform]) ``` ## LSUN ``` dset.LSUN(db_path, classes='train', [transform, target_transform]) ``` 参数说明: - db\_path = 数据集文件的根目录 - classes = ‘train’ (所有类别, 训练集), ‘val’ (所有类别, 验证集), ‘test’ (所有类别, 测试集) \[‘bedroom\_train’, ‘church\_train’, …\] : a list of categories to load## ImageFolder 一个通用的数据加载器,数据集中的数据以以下方式组织 ``` root/dog/xxx.png root/dog/xxy.png root/dog/xxz.png root/cat/123.png root/cat/nsdf3.png root/cat/asd932\_.png ``` ```python dset.ImageFolder(root="root folder path", [transform, target_transform]) ``` 他有以下成员变量: - self.classes - 用一个list保存 类名 - self.class\_to\_idx - 类名对应的 索引 - self.imgs - 保存(img-path, class) tuple的list ## Imagenet-12 This is simply implemented with an ImageFolder dataset. The data is preprocessed [as described here](https://github.com/facebook/fb.resnet.torch/blob/master/INSTALL.md#download-the-imagenet-dataset) [Here is an example](https://github.com/pytorch/examples/blob/27e2a46c1d1505324032b1d94fc6ce24d5b67e97/imagenet/main.py#L48-L62) ## CIFAR ``` dset.CIFAR10(root, train=True, transform=None, target_transform=None, download=False) dset.CIFAR100(root, train=True, transform=None, target_transform=None, download=False) ``` 参数说明: - root : `cifar-10-batches-py` 的根目录 - train : `True` = 训练集, `False` = 测试集 - download : `True` = 从互联上下载数据,并将其放在`root`目录下。如果数据集已经下载,什么都不干。## STL10 ``` dset.STL10(root, split='train', transform=None, target_transform=None, download=False) ``` 参数说明: - root : `stl10_binary`的根目录 - split : 'train' = 训练集, 'test' = 测试集, 'unlabeled' = 无标签数据集, 'train+unlabeled' = 训练 + 无标签数据集 (没有标签的标记为-1) - download : `True` = 从互联上下载数据,并将其放在`root`目录下。如果数据集已经下载,什么都不干。