在计算机科学中,通信顺序过程(communicating sequential processes,CSP)是一种描述并发系统中交互模式的正式语言,它是并发数学理论家族中的一个成员,被称为过程算法(process algebras),或者说过程计算(process calculate),是基于消息的通道传递的数学理论。
CSP模型是上个世纪七十年代提出的,不同于传统的多线程通过共享内存来通信,CSP讲究的是“以通信的方式来共享内存”。用于描述两个独立的并发实体通过共享的通讯 channel(管道)进行通信的并发模型。 CSP中channel是第一类对象,它不关注发送消息的实体,而关注与发送消息时使用的channel。
Golang中 channel是被单独创建并且可以在进程之间传递,它的通信模式类似于`boss-worker`模式的,一个实体通过将消息发送到channel 中,然后又监听这个 channel 的实体处理,两个实体之间是匿名的,这个就实现实体中间的解耦,其中 channel 是同步的一个消息被发送到 channel 中,最终是一定要被另外的实体消费掉的,在实现原理上其实类似一个阻塞的消息队列。
Goroutine 是Golang实际并发执行的实体,它底层是使用协程(coroutine)实现并发,coroutine是一种运行在用户态的用户线程,类似于greenthread,go底层选择使用coroutine的出发点是因为,
它具有以下特点:
* 用户空间 避免了内核态和用户态的切换导致的成本.
* 可以由语言和框架层进行调度.
* 更小的栈空间允许创建大量的实例.
Golang中的Goroutine的特性:
Golang内部有三个对象: P对象(processor) 代表上下文(或者可以认为是cpu),M(work thread)代表工作线程,G对象(goroutine).
正常情况下一个CPU对象启一个工作线程对象,线程去检查并执行goroutine对象。碰到goroutine对象阻塞的时候,会启动一个新的工作线程,以充分利用cpu资源。所以有时候线程对象会比处理器对象多很多.
我们用如下图分别表示P、M、G:
[![](https://github.com/KeKe-Li/data-structures-questions/raw/master/src/images/59.jpg)](https://github.com/KeKe-Li/data-structures-questions/blob/master/src/images/59.jpg)
* G(Goroutine): 我们所说的协程,为用户级的轻量级线程,每个Goroutine对象中的sched保存着其上下文信息。
* M(Machine): 对OS内核级线程的封装,数量对应真实的CPU数(真正干活的对象).
* P (Processor): 逻辑处理器,即为G和M的调度对象,用来调度G和M之间的关联关系,其数量可通过`GOMAXPROCS()`来设置,默认为核心数。
在单核情况下,所有Goroutine运行在同一个线程(M0)中,每一个线程维护一个上下文(P),任何时刻,一个上下文中只有一个Goroutine,其他Goroutine在runqueue中等待。
一个Goroutine运行完自己的时间片后,让出上下文,自己回到runqueue中(如下图所示)。
当正在运行的G0阻塞的时候(可以需要IO),会再创建一个线程(M1),P转到新的线程中去运行。
[![](https://github.com/KeKe-Li/data-structures-questions/raw/master/src/images/60.jpg)](https://github.com/KeKe-Li/data-structures-questions/blob/master/src/images/60.jpg)
当M0返回时,它会尝试从其他线程中“偷”一个上下文过来,如果没有偷到,会把Goroutine放到`Global runqueue`中去,然后把自己放入线程缓存中。
上下文会定时检查`Global runqueue`。
Golang是为并发而生的语言,Go语言是为数不多的在语言层面实现并发的语言;也正是Go语言的并发特性,吸引了全球无数的开发者。
Golang的CSP并发模型,是通过Goroutine和Channel来实现的。
Goroutine 是Go语言中并发的执行单位。有点抽象,其实就是和传统概念上的”线程“类似,可以理解为”线程“。Channel是Go语言中各个并发结构体(Goroutine)之前的通信机制。通常Channel,是各个Goroutine之间通信的”管道“,有点类似于Linux中的管道。
通信机制channel也很方便,传数据用`channel <- data`,取数据用`<-channel`。
在通信过程中,传数据`channel <- data`和取数据`<-channel`必然会成对出现,因为这边传,那边取,两个goroutine之间才会实现通信。而且不管是传还是取,肯定阻塞,直到另外的goroutine传或者取为止。因此GPM的简要概括即为:事件循环,线程池,工作队列。
- Golang基础
- Go中new与make的区别
- Golang中除了加Mutex锁以外还有哪些方式安全读写共享变量
- 无缓冲Chan的发送和接收是否同步
- Golang并发机制以及它所使用的CSP并发模型.
- Golang中常用的并发模型
- Go中对nil的Slice和空Slice的处理是一致的吗
- 协程和线程和进程的区别
- Golang的内存模型中为什么小对象多了会造成GC压力
- Go中数据竞争问题怎么解决
- 什么是channel,为什么它可以做到线程安全
- Golang垃圾回收算法
- GC的触发条件
- Go的GPM如何调度
- 并发编程概念是什么
- Go语言的栈空间管理是怎么样的
- Goroutine和Channel的作用分别是什么
- 怎么查看Goroutine的数量
- Go中的锁有哪些
- 怎么限制Goroutine的数量
- Channel是同步的还是异步的
- Goroutine和线程的区别
- Go的Struct能不能比较
- Go的defer原理是什么
- Go的select可以用于什么
- Context包的用途是什么
- Go主协程如何等其余协程完再操作
- Go的Slice如何扩容
- Go中的map如何实现顺序读取
- Go中CAS是怎么回事
- Go中的逃逸分析是什么
- Go值接收者和指针接收者的区别
- Go的对象在内存中是怎样分配的
- 栈的内存是怎么分配的
- 堆内存管理怎么分配的
- 在Go函数中为什么会发生内存泄露
- G0的作用
- Go中的锁如何实现
- Go中的channel的实现
- 栈的内存是怎么分配的2
- 堆内存管理怎么分配的2
- Go中的map的实现
- Go中的http包的实现原理
- Goroutine发生了泄漏如何检测
- Go函数返回局部变量的指针是否安全
- Go中两个Nil可能不相等吗
- Goroutine和KernelThread之间是什么关系
- 为何GPM调度要有P
- 如何在goroutine执行一半就退出协程
- Mysql基础
- Mysql索引用的是什么算法
- Mysql事务的基本要素
- Mysql的存储引擎
- Mysql事务隔离级别
- Mysql高可用方案有哪些
- Mysql中utf8和utf8mb4区别
- Mysql中乐观锁和悲观锁区别
- Mysql索引主要是哪些
- Mysql联合索引最左匹配原则
- 聚簇索引和非聚簇索引区别
- 如何查询一个字段是否命中了索引
- Mysql中查询数据什么情况下不会命中索引
- Mysql中的MVCC是什么
- Mvcc和Redolog和Undolog以及Binlog有什么不同
- Mysql读写分离以及主从同步
- InnoDB的关键特性
- Mysql如何保证一致性和持久性
- 为什么选择B+树作为索引结构
- InnoDB的行锁模式
- 哈希(hash)比树(tree)更快,索引结构为什么要设计成树型
- 为什么索引的key长度不能太长
- Mysql的数据如何恢复到任意时间点
- Mysql为什么加了索引可以加快查询
- Explain命令有什么用
- Redis基础
- Redis的数据结构及使用场景
- Redis持久化的几种方式
- Redis的LRU具体实现
- 单线程的Redis为什么快
- Redis的数据过期策略
- 如何解决Redis缓存雪崩问题
- 如何解决Redis缓存穿透问题
- Redis并发竞争key如何解决
- Redis的主从模式和哨兵模式和集群模式区别
- Redis有序集合zset底层怎么实现的
- 跳表的查询过程是怎么样的,查询和插入的时间复杂度
- 网络协议基础
- TCP和UDP有什么区别
- TCP中三次握手和四次挥手
- TCP的LISTEN状态是什么
- 常见的HTTP状态码有哪些
- 301和302有什么区别
- 504和500有什么区别
- HTTPS和HTTP有什么区别
- Quic有什么优点相比Http2
- Grpc的优缺点
- Get和Post区别
- Unicode和ASCII以及Utf8的区别
- Cookie与Session异同
- Client如何实现长连接
- Http1和Http2和Grpc之间的区别是什么
- Tcp中的拆包和粘包是怎么回事
- TFO的原理是什么
- TIME_WAIT的作用
- 网络的性能指标有哪些