合规国际互联网加速 OSASE为企业客户提供高速稳定SD-WAN国际加速解决方案。 广告
# 总结 在本章中,我们浏览了一些构建在 TensorFlow 之上的高级库。我们了解了 TF Estimator,TF Slim,TFLearn,PrettyTensor 和 Sonnet。我们为所有五个实现了 MNIST 分类示例。如果您无法理解模型的细节,请不要担心,因为为 MNIST 示例构建的模型将在以下章节中再次介绍。 我们总结了下表中提供的库和框架,如下表所示: | 高级库 | 文档链接 | 源代码链接 | pip3 安装包 | | --- | --- | --- | --- | | TF Estimator | [https://www.tensorflow.org/get_started/estimator](https://www.tensorflow.org/get_started/estimator) | [https://github.com/tensorflow/tensorflow/tree/master/tensorflow/python/estimator](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/python/estimator) | 预先安装了 TensorFlow | | TF Slim | [https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/contrib/slim](https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/contrib/slim) | [https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/contrib/slim](https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/contrib/slim/python/slim) | preinstalled with TensorFlow | | TFLearn | [http://tflearn.org/](http://tflearn.org/) | [https://github.com/tflearn/tflearn](https://github.com/tflearn/tflearn) | `tflearn` | | PrettyTensor | [https://github.com/google/prettytensor/tree/master/docs](https://github.com/google/prettytensor/tree/master/docs) | [https://github.com/google/prettytensor](https://github.com/google/prettytensor) | `prettytensor` | | Sonnet | [https://deepmind.github.io/sonnet/](https://deepmind.github.io/sonnet/) | [https://github.com/deepmind/sonnet](https://github.com/deepmind/sonnet) | `dm-sonnet` | 在下一章中,我们将了解 Keras,这是用于创建和训练 TensorFlow 模型的最流行的高级库。