💎一站式轻松地调用各大LLM模型接口,支持GPT4、智谱、星火、月之暗面及文生图 广告
# 用于 MNIST 分类的基于 Keras 的 MLP 现在让我们与 Keras 建立相同的 MLP 网络,Keras 是 TensorFlow 的高级库。我们保留所有参数与本章中用于 TensorFlow 示例的参数相同,例如,隐藏层的激活函数保留为 ReLU 函数。 1. 从 Keras 导入所需的模块: ```py import keras from keras.models import Sequential from keras.layers import Dense from keras.optimizers import SGD ``` 1. 定义超参数(我们假设数据集已经加载到`X_train`,`Y_train`,`X_test`和`Y_test`变量): ```py num_layers = 2 num_neurons = [] for i in range(num_layers): num_neurons.append(256) learning_rate = 0.01 n_epochs = 50 batch_size = 100 ``` 1. 创建顺序模型: ```py model = Sequential() ``` 1. 添加第一个隐藏层。只有在第一个隐藏层中,我们必须指定输入张量的形状: ```py model.add(Dense(units=num_neurons[0], activation='relu', input_shape=(num_inputs,))) ``` 1. 添加第二层: ```py model.add(Dense(units=num_neurons[1], activation='relu')) ``` 1. 使用 softmax 激活函数添加输出层: ```py model.add(Dense(units=num_outputs, activation='softmax')) ``` 1. 打印模型详细信息: ```py model.summary() ``` 我们得到以下输出: ```py _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_1 (Dense) (None, 256) 200960 _________________________________________________________________ dense_2 (Dense) (None, 256) 65792 _________________________________________________________________ dense_3 (Dense) (None, 10) 2570 ================================================================= Total params: 269,322 Trainable params: 269,322 Non-trainable params: 0 _________________________________________________________________ ``` 1. 使用 SGD 优化器编译模型: ```py model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=learning_rate), metrics=['accuracy']) ``` 1. 训练模型: ```py model.fit(X_train, Y_train, batch_size=batch_size, epochs=n_epochs) ``` 在训练模型时,我们可以观察每次训练迭代的损失和准确性: ```py Epoch 1/50 55000/55000 [========================] - 4s - loss: 1.1055 - acc: 0.7413 Epoch 2/50 55000/55000 [========================] - 3s - loss: 0.4396 - acc: 0.8833 Epoch 3/50 55000/55000 [========================] - 3s - loss: 0.3523 - acc: 0.9010 Epoch 4/50 55000/55000 [========================] - 3s - loss: 0.3129 - acc: 0.9112 Epoch 5/50 55000/55000 [========================] - 3s - loss: 0.2871 - acc: 0.9181 --- Epoch 6 to 45 output removed for brevity --- Epoch 46/50 55000/55000 [========================] - 4s - loss: 0.0689 - acc: 0.9814 Epoch 47/50 55000/55000 [========================] - 4s - loss: 0.0672 - acc: 0.9819 Epoch 48/50 55000/55000 [========================] - 4s - loss: 0.0658 - acc: 0.9822 Epoch 49/50 55000/55000 [========================] - 4s - loss: 0.0643 - acc: 0.9829 Epoch 50/50 55000/55000 [========================] - 4s - loss: 0.0627 - acc: 0.9829 ``` 1. 评估模型并打印损失和准确性: ```py score = model.evaluate(X_test, Y_test) print('\n Test loss:', score[0]) print('Test accuracy:', score[1]) ``` 我们得到以下输出: ```py Test loss: 0.089410082236 Test accuracy: 0.9727 ``` 笔记本`ch-05_MLP`中提供了使用 Keras 进行 MNIST 分类的 MLP 的完整代码。