合规国际互联网加速 OSASE为企业客户提供高速稳定SD-WAN国际加速解决方案。 广告
# 使用 TensorFlow 的简单的 GAN 您可以按照 Jupyter 笔记本中的代码`ch-14a_SimpleGAN`。 为了使用 TensorFlow 构建 GAN,我们使用以下步骤构建三个网络,两个判别器模型和一个生成器模型: 1. 首先添加用于定义网络的超参数: ```py # graph hyperparameters g_learning_rate = 0.00001 d_learning_rate = 0.01 n_x = 784 # number of pixels in the MNIST image # number of hidden layers for generator and discriminator g_n_layers = 3 d_n_layers = 1 # neurons in each hidden layer g_n_neurons = [256, 512, 1024] d_n_neurons = [256] # define parameter ditionary d_params = {} g_params = {} activation = tf.nn.leaky_relu w_initializer = tf.glorot_uniform_initializer b_initializer = tf.zeros_initializer ``` 1. 接下来,定义生成器网络: ```py z_p = tf.placeholder(dtype=tf.float32, name='z_p', shape=[None, n_z]) layer = z_p # add generator network weights, biases and layers with tf.variable_scope('g'): for i in range(0, g_n_layers): w_name = 'w_{0:04d}'.format(i) g_params[w_name] = tf.get_variable( name=w_name, shape=[n_z if i == 0 else g_n_neurons[i - 1], g_n_neurons[i]], initializer=w_initializer()) b_name = 'b_{0:04d}'.format(i) g_params[b_name] = tf.get_variable( name=b_name, shape=[g_n_neurons[i]], initializer=b_initializer()) layer = activation( tf.matmul(layer, g_params[w_name]) + g_params[b_name]) # output (logit) layer i = g_n_layers w_name = 'w_{0:04d}'.format(i) g_params[w_name] = tf.get_variable( name=w_name, shape=[g_n_neurons[i - 1], n_x], initializer=w_initializer()) b_name = 'b_{0:04d}'.format(i) g_params[b_name] = tf.get_variable( name=b_name, shape=[n_x], initializer=b_initializer()) g_logit = tf.matmul(layer, g_params[w_name]) + g_params[b_name] g_model = tf.nn.tanh(g_logit) ``` 1. 接下来,定义我们将构建的两个判别器网络的权重和偏差: ```py with tf.variable_scope('d'): for i in range(0, d_n_layers): w_name = 'w_{0:04d}'.format(i) d_params[w_name] = tf.get_variable( name=w_name, shape=[n_x if i == 0 else d_n_neurons[i - 1], d_n_neurons[i]], initializer=w_initializer()) b_name = 'b_{0:04d}'.format(i) d_params[b_name] = tf.get_variable( name=b_name, shape=[d_n_neurons[i]], initializer=b_initializer()) #output (logit) layer i = d_n_layers w_name = 'w_{0:04d}'.format(i) d_params[w_name] = tf.get_variable( name=w_name, shape=[d_n_neurons[i - 1], 1], initializer=w_initializer()) b_name = 'b_{0:04d}'.format(i) d_params[b_name] = tf.get_variable( name=b_name, shape=[1], initializer=b_initializer()) ``` 1. 现在使用这些参数,构建将真实图像作为输入并输出分类的判别器: ```py # define discriminator_real # input real images x_p = tf.placeholder(dtype=tf.float32, name='x_p', shape=[None, n_x]) layer = x_p with tf.variable_scope('d'): for i in range(0, d_n_layers): w_name = 'w_{0:04d}'.format(i) b_name = 'b_{0:04d}'.format(i) layer = activation( tf.matmul(layer, d_params[w_name]) + d_params[b_name]) layer = tf.nn.dropout(layer,0.7) #output (logit) layer i = d_n_layers w_name = 'w_{0:04d}'.format(i) b_name = 'b_{0:04d}'.format(i) d_logit_real = tf.matmul(layer, d_params[w_name]) + d_params[b_name] d_model_real = tf.nn.sigmoid(d_logit_real) ``` 1. 接下来,使用相同的参数构建另一个判别器网络,但提供生成器的输出作为输入: ```py # define discriminator_fake # input generated fake images z = g_model layer = z with tf.variable_scope('d'): for i in range(0, d_n_layers): w_name = 'w_{0:04d}'.format(i) b_name = 'b_{0:04d}'.format(i) layer = activation( tf.matmul(layer, d_params[w_name]) + d_params[b_name]) layer = tf.nn.dropout(layer,0.7) #output (logit) layer i = d_n_layers w_name = 'w_{0:04d}'.format(i) b_name = 'b_{0:04d}'.format(i) d_logit_fake = tf.matmul(layer, d_params[w_name]) + d_params[b_name] d_model_fake = tf.nn.sigmoid(d_logit_fake) ``` 1. 现在我们已经建立了三个网络,它们之间的连接是使用损失,优化器和训练函数完成的。在训练生成器时,我们只训练生成器的参数,在训练判别器时,我们只训练判别器的参数。我们使用`var_list`参数将此指定给优化器的`minimize()`函数。以下是为两种网络定义损失,优化器和训练函数的完整代码: ```py g_loss = -tf.reduce_mean(tf.log(d_model_fake)) d_loss = -tf.reduce_mean(tf.log(d_model_real) + tf.log(1 - d_model_fake)) g_optimizer = tf.train.AdamOptimizer(g_learning_rate) d_optimizer = tf.train.GradientDescentOptimizer(d_learning_rate) g_train_op = g_optimizer.minimize(g_loss, var_list=list(g_params.values())) d_train_op = d_optimizer.minimize(d_loss, var_list=list(d_params.values())) ``` 1. 现在我们已经定义了模型,我们必须训练模型。训练按照以下算法完成: ```py For each epoch: For each batch: get real images x_batch generate noise z_batch train discriminator using z_batch and x_batch generate noise z_batch train generator using z_batch ``` 笔记本电脑的完整训练代码如下: ```py n_epochs = 400 batch_size = 100 n_batches = int(mnist.train.num_examples / batch_size) n_epochs_print = 50 with tf.Session() as tfs: tfs.run(tf.global_variables_initializer()) for epoch in range(n_epochs): epoch_d_loss = 0.0 epoch_g_loss = 0.0 for batch in range(n_batches): x_batch, _ = mnist.train.next_batch(batch_size) x_batch = norm(x_batch) z_batch = np.random.uniform(-1.0,1.0,size=[batch_size,n_z]) feed_dict = {x_p: x_batch,z_p: z_batch} _,batch_d_loss = tfs.run([d_train_op,d_loss], feed_dict=feed_dict) z_batch = np.random.uniform(-1.0,1.0,size=[batch_size,n_z]) feed_dict={z_p: z_batch} _,batch_g_loss = tfs.run([g_train_op,g_loss], feed_dict=feed_dict) epoch_d_loss += batch_d_loss epoch_g_loss += batch_g_loss if epoch%n_epochs_print == 0: average_d_loss = epoch_d_loss / n_batches average_g_loss = epoch_g_loss / n_batches print('epoch: {0:04d} d_loss = {1:0.6f} g_loss = {2:0.6f}' .format(epoch,average_d_loss,average_g_loss)) # predict images using generator model trained x_pred = tfs.run(g_model,feed_dict={z_p:z_test}) display_images(x_pred.reshape(-1,pixel_size,pixel_size)) ``` 我们每 50 个周期印刷生成的图像: ![](https://img.kancloud.cn/3e/e8/3ee8c767847f283668eb072c840e6d40_785x1084.png) 正如我们所看到的那样,生成器在周期 0 中只产生噪声,但是在周期 350 中,它经过训练可以产生更好的手写数字形状。您可以尝试使用周期,正则化,网络架构和其他超参数进行试验,看看是否可以产生更快更好的结果。