合规国际互联网加速 OSASE为企业客户提供高速稳定SD-WAN国际加速解决方案。 广告
# 在 Kubernetes 部署 我们继续在 Kubernotes 中进行部署,如下所示: 1. 使用以下内容创建`mnist.yaml`文件: ```py apiVersion: extensions/v1beta1 kind: Deployment metadata: name: mnist-deployment spec: replicas: 3 template: metadata: labels: app: mnist-server spec: containers: - name: mnist-container image: neurasights/mnist-serving command: - /bin/sh args: - -c - tensorflow_model_server --model_name=mnist --model_base_path=/tmp/mnist_model ports: - containerPort: 8500 --- apiVersion: v1 kind: Service metadata: labels: run: mnist-service name: mnist-service spec: ports: - port: 8500 targetPort: 8500 selector: app: mnist-server # type: LoadBalancer ``` 如果您在 AWS 或 GCP 云中运行它,则取消注释前一个文件中的`LoadBalancer`行。 由于我们在单个节点上本地运行整个集群,因此我们没有外部 LoadBalancer。 1. 创建 Kubernetes 部署和服务: ```py $ kubectl create -f mnist.yaml deployment "mnist-deployment" created service "mnist-service" created ``` 1. 检查部署,窗格和服务: ```py $ kubectl get deployments NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE mnist-deployment 3 3 3 0 1m $ kubectl get pods NAME READY STATUS RESTARTS AGE default-http-backend-bbchw 1/1 Running 3 9d mnist-deployment-554f4b674b-pwk8z 0/1 ContainerCreating 0 1m mnist-deployment-554f4b674b-vn6sd 0/1 ContainerCreating 0 1m mnist-deployment-554f4b674b-zt4xt 0/1 ContainerCreating 0 1m nginx-ingress-controller-724n5 1/1 Running 2 9d ``` ```py $ kubectl get services NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE default-http-backend ClusterIP 10.152.183.223 <none> 80/TCP 9d kubernetes ClusterIP 10.152.183.1 <none> 443/TCP 9d mnist-service LoadBalancer 10.152.183.66 <pending> 8500:32414/TCP 1m ``` ```py $ kubectl describe service mnist-service Name: mnist-service Namespace: default Labels: run=mnist-service Annotations: <none> Selector: app=mnist-server Type: LoadBalancer IP: 10.152.183.66 Port: <unset> 8500/TCP TargetPort: 8500/TCP NodePort: <unset> 32414/TCP Endpoints: 10.1.43.122:8500,10.1.43.123:8500,10.1.43.124:8500 Session Affinity: None External Traffic Policy: Cluster Events: <none> ``` 1. 等到所有 pod 的状态为`Running`: ```py $ kubectl get pods NAME READY STATUS RESTARTS AGE default-http-backend-bbchw 1/1 Running 3 9d mnist-deployment-554f4b674b-pwk8z 1/1 Running 0 3m mnist-deployment-554f4b674b-vn6sd 1/1 Running 0 3m mnist-deployment-554f4b674b-zt4xt 1/1 Running 0 3m nginx-ingress-controller-724n5 1/1 Running 2 9d ``` 1. 检查其中一个 pod 的日志,您应该看到如下内容: ```py $ kubectl logs mnist-deployment-59dfc5df64-g7prf I tensorflow_serving/model_servers/main.cc:147] Building single TensorFlow model file config: model_name: mnist model_base_path: /tmp/mnist_model I tensorflow_serving/model_servers/server_core.cc:441] Adding/updating models. I tensorflow_serving/model_servers/server_core.cc:492] (Re-)adding model: mnist I tensorflow_serving/core/basic_manager.cc:705] Successfully reserved resources to load servable {name: mnist version: 1} I tensorflow_serving/core/loader_harness.cc:66] Approving load for servable version {name: mnist version: 1} I tensorflow_serving/core/loader_harness.cc:74] Loading servable version {name: mnist version: 1} I external/org_tensorflow/tensorflow/contrib/session_bundle/bundle_shim.cc:360] Attempting to load native SavedModelBundle in bundle-shim from: /tmp/mnist_model/1 I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:236] Loading SavedModel from: /tmp/mnist_model/1 I external/org_tensorflow/tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:155] Restoring SavedModel bundle. I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:190] Running LegacyInitOp on SavedModel bundle. I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:284] Loading SavedModel: success. Took 45319 microseconds. I tensorflow_serving/core/loader_harness.cc:86] Successfully loaded servable version {name: mnist version: 1} E1122 12:18:04.566415410 6 ev_epoll1_linux.c:1051] grpc epoll fd: 3 I tensorflow_serving/model_servers/main.cc:288] Running ModelServer at 0.0.0.0:8500 ... ``` 1. 您还可以使用以下命令查看 UI 控制台: ```py $ kubectl proxy xdg-open http://localhost:8001/ui ``` Kubernetes UI 控制台如下图所示: ![](https://img.kancloud.cn/bc/74/bc744cf3920392477d37977a19898bcf_1069x803.png)![](https://img.kancloud.cn/55/0e/550ea233e53d592a992d5ae50f60ef98_1059x811.png) 由于我们在单个节点上本地运行集群,因此我们的服务仅在集群中公开,无法从外部访问。登录我们刚刚实例化的三个 pod 中的一个: ```py $ kubectl exec -it mnist-deployment-59dfc5df64-bb24q -- /bin/bash ``` 切换到主目录并运行 MNIST 客户端来测试服务: ```py $ kubectl exec -it mnist-deployment-59dfc5df64-bb24q -- /bin/bash root@mnist-deployment-59dfc5df64-bb24q:/# cd root@mnist-deployment-59dfc5df64-bb24q:~# python serving/tensorflow_serving/example/mnist_client.py --num_tests=100 --server=10.152.183.67:8500 Extracting /tmp/train-images-idx3-ubyte.gz Extracting /tmp/train-labels-idx1-ubyte.gz Extracting /tmp/t10k-images-idx3-ubyte.gz Extracting /tmp/t10k-labels-idx1-ubyte.gz .................................................................................................... Inference error rate: 7.0% root@mnist-deployment-59dfc5df64-bb24q:~# ``` 我们学习了如何在本地单个节点上运行的 Kubernetes 集群上部署 TensorFlow 服务。您可以使用相同的概念知识在您的场所内的公共云或私有云上部署服务。