在C语言中,用一个指针变量指向一个文件,这个指针称为文件指针。通过文件指针就可对它所指的文件进行各种操作。
定义文件指针的一般形式为:
~~~
FILE *fp;
~~~
这里的FILE,实际上是在stdio.h中定义的一个结构体,该结构体中含有文件名、文件状态和文件当前位置等信息,fopen 返回的就是FILE类型的指针。
注意:FILE是文件缓冲区的结构,fp也是指向文件缓冲区的指针。
不同编译器 stdio.h 头文件中对 FILE 的定义略有差异,这里以标准C举例说明:
~~~
typedef struct _iobuf {
int cnt; // 剩余的字符,如果是输入缓冲区,那么就表示缓冲区中还有多少个字符未被读取
char *ptr; // 下一个要被读取的字符的地址
char *base; // 缓冲区基地址
int flag; // 读写状态标志位
int fd; // 文件描述符
// 其他成员
} FILE;
~~~
下面说一下如果控制缓冲区。
我们知道,当我们从键盘输入数据的时候,数据并不是直接被我们得到,而是放在了缓冲区中,然后我们从缓冲区中得到我们想要的数据 。如果我们通过setbuf()或setvbuf()函数将缓冲区设置10个字节的大小,而我们从键盘输入了20个字节大小的数据,这样我们输入的前10个数据会放在缓冲区中,因为我们设置的缓冲区的大小只能够装下10个字节大小的数据,装不下20个字节大小的数据。那么剩下的那10个字节大小的数据怎么办呢?暂时放在了输入流中。请看下图:

上面的箭头表示的区域就相当是一个输入流,红色的地方相当于一个开关,这个开关可以控制往深绿色区域(标注的是缓冲区)里放进去的数据,输入20个字节的数据只往缓冲区中放进去了10个字节,剩下的10个字节的数据就被停留在了输入流里!等待下去往缓冲区中放入!接下来系统是如何来控制这个缓冲区呢?
再说一下 FILE 结构体中几个相关成员的含义:
cnt // 剩余的字符,如果是输入缓冲区,那么就表示缓冲区中还有多少个字符未被读取
ptr // 下一个要被读取的字符的地址
base // 缓冲区基地址
在上面我们向缓冲区中放入了10个字节大小的数据,FILE结构体中的 cnt 变为了10 ,说明此时缓冲区中有10个字节大小的数据可以读,同时我们假设缓冲区的基地址也就是 base 是0x00428e60 ,它是不变的 ,而此时 ptr 的值也为0x00428e60 ,表示从0x00428e60这个位置开始读取数据,当我们从缓冲区中读取5个数据的时候,cnt 变为了5 ,表示缓冲区还有5个数据可以读,ptr 则变为了0x0042e865表示下次应该从这个位置开始读取缓冲区中的数据 ,如果接下来我们再读取5个数据的时候,cnt 则变为了0 ,表示缓冲区中已经没有任何数据了,ptr 变为了0x0042869表示下次应该从这个位置开始从缓冲区中读取数据,但是此时缓冲区中已经没有任何数据了,所以要将输入流中的剩下的那10个数据放进来,这样缓冲区中又有了10个数据,此时 cnt 变为了10 ,注意了刚才我们讲到 ptr 的值是0x00428e69 ,而当缓冲区中重新放进来数据的时候这个 ptr 的值变为了0x00428e60 ,这是因为当缓冲区中没有任何数据的时候要将 ptr 这个值进行一下刷新,使其指向缓冲区的基地址也就是0x0042e860这个值!因为下次要从这个位置开始读取数据!
在这里有点需要说明:当我们从键盘输入字符串的时候需要敲一下回车键才能够将这个字符串送入到缓冲区中,那么敲入的这个回车键(\\r)会被转换为一个换行符\\n,这个换行符\\n也会被存储在缓冲区中并且被当成一个字符来计算!比如我们在键盘上敲下了123456这个字符串,然后敲一下回车键(\\r)将这个字符串送入了缓冲区中,那么此时缓冲区中的字节个数是7 ,而不是6。
缓冲区的刷新就是将指针 ptr 变为缓冲区的基地址 ,同时 cnt 的值变为0 ,因为缓冲区刷新后里面是没有数据的!
- c语言
- 基础知识
- 变量和常量
- 宏定义和预处理
- 随机数
- register变量
- errno全局变量
- 静态变量
- 类型
- 数组
- 类型转换
- vs中c4996错误
- 数据类型和长度
- 二进制数,八进制数和十六进制数
- 位域
- typedef定义类型
- 函数和编译
- 函数调用惯例
- 函数进栈和出栈
- 函数
- 编译
- sizeof
- main函数接收参数
- 宏函数
- 目标文件和可执行文件有什么
- 强符号和弱符号
- 什么是链接
- 符号
- 强引用和弱引用
- 字符串处理函数
- sscanf
- 查找子字符串
- 字符串指针
- qt
- MFC
- 指针
- 简介
- 指针详解
- 案例
- 指针数组
- 偏移量
- 间接赋值
- 易错点
- 二级指针
- 结构体指针
- 字节对齐
- 函数指针
- 指针例子
- main接收用户输入
- 内存布局
- 内存分区
- 空间开辟和释放
- 堆空间操作字符串
- 内存处理函数
- 内存分页
- 内存模型
- 栈
- 栈溢出攻击
- 内存泄露
- 大小端存储法
- 寄存器
- 结构体
- 共用体
- 枚举
- 文件操作
- 文件到底是什么
- 文件打开和关闭
- 文件的顺序读写
- 文件的随机读写
- 文件复制
- FILE和缓冲区
- 文件大小
- 插入,删除,更改文件内容
- typeid
- 内部链接和外部链接
- 动态库
- 调试器
- 调试的概念
- vs调试
- 多文件编程
- extern关键字
- 头文件规范
- 标准库以及标准头文件
- 头文件只包含一次
- static
- 多线程
- 简介
- 创建线程threads.h
- 创建线程pthread
- gdb
- 简介
- mac使用gdb
- setjump和longjump
- 零拷贝
- gc
- 调试器原理
- c++
- c++简介
- c++对c的扩展
- ::作用域运算符
- 名字控制
- cpp对c的增强
- const
- 变量定义数组
- 尽量以const替换#define
- 引用
- 内联函数
- 函数默认参数
- 函数占位参数
- 函数重载
- extern "C"
- 类和对象
- 类封装
- 构造和析构
- 深浅拷贝
- explicit关键字
- 动态对象创建
- 静态成员
- 对象模型
- this
- 友元
- 单例
- 继承
- 多态
- 运算符重载
- 赋值重载
- 指针运算符(*,->)重载
- 前置和后置++
- 左移<<运算符重载
- 函数调用符重载
- 总结
- bool重载
- 模板
- 简介
- 普通函数和模板函数调用
- 模板的局限性
- 类模板
- 复数的模板类
- 类模板作为参数
- 类模板继承
- 类模板类内和类外实现
- 类模板和友元函数
- 类模板实现数组
- 类型转换
- 异常
- 异常基本语法
- 异常的接口声明
- 异常的栈解旋
- 异常的多态
- 标准异常库
- 自定义异常
- io
- 流的概念和类库结构
- 标准io流
- 标准输入流
- 标准输出流
- 文件读写
- STL
- 简介
- string容器
- vector容器
- deque容器
- stack容器
- queue容器
- list容器
- set/multiset容器
- map/multimap容器
- pair对组
- 深浅拷贝问题
- 使用时机
- 常用算法
- 函数对象
- 谓词
- 内建函数对象
- 函数对象适配器
- 空间适配器
- 常用遍历算法
- 查找算法
- 排序算法
- 拷贝和替换算法
- 算术生成算法
- 集合算法
- gcc
- GDB
- makefile
- visualstudio
- VisualAssistX
- 各种插件
- utf8编码
- 制作安装项目
- 编译模式
- 内存对齐
- 快捷键
- 自动补全
- 查看c++类内存布局
- FFmpeg
- ffmpeg架构
- 命令的基本格式
- 分解与复用
- 处理原始数据
- 录屏和音
- 滤镜
- 水印
- 音视频的拼接与裁剪
- 视频图片转换
- 直播
- ffplay
- 常见问题
- 多媒体文件处理
- ffmpeg代码结构
- 日志系统
- 处理流数据
- linux
- 系统调用
- 常用IO函数
- 文件操作函数
- 文件描述符复制
- 目录相关操作
- 时间相关函数
- 进程
- valgrind
- 进程通信
- 信号
- 信号产生函数
- 信号集
- 信号捕捉
- SIGCHLD信号
- 不可重入函数和可重入函数
- 进程组
- 会话
- 守护进程
- 线程
- 线程属性
- 互斥锁
- 读写锁
- 条件变量
- 信号量
- 网络
- 分层模型
- 协议格式
- TCP协议
- socket
- socket概念
- 网络字节序
- ip地址转换函数
- sockaddr数据结构
- 网络套接字函数
- socket模型创建流程图
- socket函数
- bind函数
- listen函数
- accept函数
- connect函数
- C/S模型-TCP
- 出错处理封装函数
- 多进程并发服务器
- 多线程并发服务器
- 多路I/O复用服务器
- select
- poll
- epoll
- epoll事件
- epoll例子
- epoll反应堆思想
- udp
- socket IPC(本地套接字domain)
- 其他常用函数
- libevent
- libevent简介