[TOC]
# 简介
epoll是Linux下多路复用IO接口select/poll的增强版本,它能显著提高程序在大量并发连接中只有少量活跃的情况下的系统CPU利用率,因为它会复用文件描述符集合来传递结果而不用迫使开发者每次等待事件之前都必须重新准备要被侦听的文件描述符集合,另一点原因就是获取事件的时候,它无须遍历整个被侦听的描述符集,只要遍历那些被内核IO事件异步唤醒而加入Ready队列的描述符集合就行了。
目前epoll是linux大规模并发网络程序中的热门首选模型。
epoll除了提供select/poll那种IO事件的水平触发(Level Triggered)外,还提供了边沿触发(Edge Triggered),这就使得用户空间程序有可能缓存IO状态,减少epoll_wait/epoll_pwait的调用,提高应用程序效率。
可以使用cat命令查看一个进程可以打开的socket描述符上限。
~~~
cat /proc/sys/fs/file-max
~~~
如有需要,可以通过修改配置文件的方式修改该上限值。
~~~
sudo vi /etc/security/limits.conf
在文件尾部写入以下配置,soft软限制,hard硬限制。如下图所示。
* soft nofile 65536
* hard nofile 100000
~~~
# 基础API
1. 创建一个epoll句柄,参数size用来告诉内核监听的文件描述符的个数,跟内存大小有关。
~~~
#include <sys/epoll.h>
int epoll_create(int size)
size:监听数目(内核参考值)
返回值:成功:非负文件描述符;失败:-1,设置相应的errno
~~~
2. 控制某个epoll监控的文件描述符上的事件:注册、修改、删除。
~~~
#include <sys/epoll.h>
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event)
epfd: 为epoll_creat的句柄
op: 表示动作,用3个宏来表示:
EPOLL_CTL_ADD (注册新的fd到epfd),
EPOLL_CTL_MOD (修改已经注册的fd的监听事件),
EPOLL_CTL_DEL (从epfd删除一个fd);
event: 告诉内核需要监听的事件
struct epoll_event {
__uint32_t events; /* Epoll events */
epoll_data_t data; /* User data variable */
};
typedef union epoll_data {
void *ptr;
int fd;
uint32_t u32;
uint64_t u64;
} epoll_data_t;
EPOLLIN : 表示对应的文件描述符可以读(包括对端SOCKET正常关闭)
EPOLLOUT: 表示对应的文件描述符可以写
EPOLLPRI: 表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来)
EPOLLERR: 表示对应的文件描述符发生错误
EPOLLHUP: 表示对应的文件描述符被挂断;
EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)而言的
EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里
返回值:成功:0;失败:-1,设置相应的errno
~~~
3. 等待所监控文件描述符上有事件的产生,类似于select()调用。
~~~
#include <sys/epoll.h>
int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout)
events: 用来存内核得到事件的集合,可简单看作数组。
maxevents: 告之内核这个events有多大,这个maxevents的值不能大于创建epoll_create()时的size,
timeout: 是超时时间
-1: 阻塞
0: 立即返回,非阻塞
>0: 指定毫秒
返回值: 成功返回有多少文件描述符就绪,时间到时返回0,出错返回-1
~~~
# server
~~~
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/epoll.h>
#include <errno.h>
#include "wrap.h"
#define MAXLINE 80
#define SERV_PORT 6666
#define OPEN_MAX 1024
int main(int argc, char *argv[])
{
int i, j, maxi, listenfd, connfd, sockfd;
int nready, efd, res;
ssize_t n;
char buf[MAXLINE], str[INET_ADDRSTRLEN];
socklen_t clilen;
int client[OPEN_MAX];
struct sockaddr_in cliaddr, servaddr;
struct epoll_event tep, ep[OPEN_MAX];
listenfd = Socket(AF_INET, SOCK_STREAM, 0);
bzero(&servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
servaddr.sin_port = htons(SERV_PORT);
Bind(listenfd, (struct sockaddr *) &servaddr, sizeof(servaddr));
Listen(listenfd, 20);
for (i = 0; i < OPEN_MAX; i++)
client[i] = -1;
maxi = -1;
efd = epoll_create(OPEN_MAX);
if (efd == -1)
perr_exit("epoll_create");
tep.events = EPOLLIN; tep.data.fd = listenfd;
res = epoll_ctl(efd, EPOLL_CTL_ADD, listenfd, &tep);
if (res == -1)
perr_exit("epoll_ctl");
while (1) {
nready = epoll_wait(efd, ep, OPEN_MAX, -1); /* 阻塞监听 */
if (nready == -1)
perr_exit("epoll_wait");
for (i = 0; i < nready; i++) {
if (!(ep[i].events & EPOLLIN))
continue;
if (ep[i].data.fd == listenfd) {
clilen = sizeof(cliaddr);
connfd = Accept(listenfd, (struct sockaddr *)&cliaddr, &clilen);
printf("received from %s at PORT %d\n",
inet_ntop(AF_INET, &cliaddr.sin_addr, str, sizeof(str)),
ntohs(cliaddr.sin_port));
for (j = 0; j < OPEN_MAX; j++) {
if (client[j] < 0) {
client[j] = connfd; /* save descriptor */
break;
}
}
if (j == OPEN_MAX)
perr_exit("too many clients");
if (j > maxi)
maxi = j; /* max index in client[] array */
tep.events = EPOLLIN;
tep.data.fd = connfd;
res = epoll_ctl(efd, EPOLL_CTL_ADD, connfd, &tep);
if (res == -1)
perr_exit("epoll_ctl");
} else {
sockfd = ep[i].data.fd;
n = Read(sockfd, buf, MAXLINE);
if (n == 0) {
for (j = 0; j <= maxi; j++) {
if (client[j] == sockfd) {
client[j] = -1;
break;
}
}
res = epoll_ctl(efd, EPOLL_CTL_DEL, sockfd, NULL);
if (res == -1)
perr_exit("epoll_ctl");
Close(sockfd);
printf("client[%d] closed connection\n", j);
} else {
for (j = 0; j < n; j++)
buf[j] = toupper(buf[j]);
Writen(sockfd, buf, n);
}
}
}
}
close(listenfd);
close(efd);
return 0;
}
~~~
# client
~~~
/* client.c */
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <netinet/in.h>
#include "wrap.h"
#define MAXLINE 80
#define SERV_PORT 6666
int main(int argc, char *argv[])
{
struct sockaddr_in servaddr;
char buf[MAXLINE];
int sockfd, n;
sockfd = Socket(AF_INET, SOCK_STREAM, 0);
bzero(&servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
inet_pton(AF_INET, "127.0.0.1", &servaddr.sin_addr);
servaddr.sin_port = htons(SERV_PORT);
Connect(sockfd, (struct sockaddr *)&servaddr, sizeof(servaddr));
while (fgets(buf, MAXLINE, stdin) != NULL) {
Write(sockfd, buf, strlen(buf));
n = Read(sockfd, buf, MAXLINE);
if (n == 0)
printf("the other side has been closed.\n");
else
Write(STDOUT_FILENO, buf, n);
}
Close(sockfd);
return 0;
}
~~~
- c语言
- 基础知识
- 变量和常量
- 宏定义和预处理
- 随机数
- register变量
- errno全局变量
- 静态变量
- 类型
- 数组
- 类型转换
- vs中c4996错误
- 数据类型和长度
- 二进制数,八进制数和十六进制数
- 位域
- typedef定义类型
- 函数和编译
- 函数调用惯例
- 函数进栈和出栈
- 函数
- 编译
- sizeof
- main函数接收参数
- 宏函数
- 目标文件和可执行文件有什么
- 强符号和弱符号
- 什么是链接
- 符号
- 强引用和弱引用
- 字符串处理函数
- sscanf
- 查找子字符串
- 字符串指针
- qt
- MFC
- 指针
- 简介
- 指针详解
- 案例
- 指针数组
- 偏移量
- 间接赋值
- 易错点
- 二级指针
- 结构体指针
- 字节对齐
- 函数指针
- 指针例子
- main接收用户输入
- 内存布局
- 内存分区
- 空间开辟和释放
- 堆空间操作字符串
- 内存处理函数
- 内存分页
- 内存模型
- 栈
- 栈溢出攻击
- 内存泄露
- 大小端存储法
- 寄存器
- 结构体
- 共用体
- 枚举
- 文件操作
- 文件到底是什么
- 文件打开和关闭
- 文件的顺序读写
- 文件的随机读写
- 文件复制
- FILE和缓冲区
- 文件大小
- 插入,删除,更改文件内容
- typeid
- 内部链接和外部链接
- 动态库
- 调试器
- 调试的概念
- vs调试
- 多文件编程
- extern关键字
- 头文件规范
- 标准库以及标准头文件
- 头文件只包含一次
- static
- 多线程
- 简介
- 创建线程threads.h
- 创建线程pthread
- gdb
- 简介
- mac使用gdb
- setjump和longjump
- 零拷贝
- gc
- 调试器原理
- c++
- c++简介
- c++对c的扩展
- ::作用域运算符
- 名字控制
- cpp对c的增强
- const
- 变量定义数组
- 尽量以const替换#define
- 引用
- 内联函数
- 函数默认参数
- 函数占位参数
- 函数重载
- extern "C"
- 类和对象
- 类封装
- 构造和析构
- 深浅拷贝
- explicit关键字
- 动态对象创建
- 静态成员
- 对象模型
- this
- 友元
- 单例
- 继承
- 多态
- 运算符重载
- 赋值重载
- 指针运算符(*,->)重载
- 前置和后置++
- 左移<<运算符重载
- 函数调用符重载
- 总结
- bool重载
- 模板
- 简介
- 普通函数和模板函数调用
- 模板的局限性
- 类模板
- 复数的模板类
- 类模板作为参数
- 类模板继承
- 类模板类内和类外实现
- 类模板和友元函数
- 类模板实现数组
- 类型转换
- 异常
- 异常基本语法
- 异常的接口声明
- 异常的栈解旋
- 异常的多态
- 标准异常库
- 自定义异常
- io
- 流的概念和类库结构
- 标准io流
- 标准输入流
- 标准输出流
- 文件读写
- STL
- 简介
- string容器
- vector容器
- deque容器
- stack容器
- queue容器
- list容器
- set/multiset容器
- map/multimap容器
- pair对组
- 深浅拷贝问题
- 使用时机
- 常用算法
- 函数对象
- 谓词
- 内建函数对象
- 函数对象适配器
- 空间适配器
- 常用遍历算法
- 查找算法
- 排序算法
- 拷贝和替换算法
- 算术生成算法
- 集合算法
- gcc
- GDB
- makefile
- visualstudio
- VisualAssistX
- 各种插件
- utf8编码
- 制作安装项目
- 编译模式
- 内存对齐
- 快捷键
- 自动补全
- 查看c++类内存布局
- FFmpeg
- ffmpeg架构
- 命令的基本格式
- 分解与复用
- 处理原始数据
- 录屏和音
- 滤镜
- 水印
- 音视频的拼接与裁剪
- 视频图片转换
- 直播
- ffplay
- 常见问题
- 多媒体文件处理
- ffmpeg代码结构
- 日志系统
- 处理流数据
- linux
- 系统调用
- 常用IO函数
- 文件操作函数
- 文件描述符复制
- 目录相关操作
- 时间相关函数
- 进程
- valgrind
- 进程通信
- 信号
- 信号产生函数
- 信号集
- 信号捕捉
- SIGCHLD信号
- 不可重入函数和可重入函数
- 进程组
- 会话
- 守护进程
- 线程
- 线程属性
- 互斥锁
- 读写锁
- 条件变量
- 信号量
- 网络
- 分层模型
- 协议格式
- TCP协议
- socket
- socket概念
- 网络字节序
- ip地址转换函数
- sockaddr数据结构
- 网络套接字函数
- socket模型创建流程图
- socket函数
- bind函数
- listen函数
- accept函数
- connect函数
- C/S模型-TCP
- 出错处理封装函数
- 多进程并发服务器
- 多线程并发服务器
- 多路I/O复用服务器
- select
- poll
- epoll
- epoll事件
- epoll例子
- epoll反应堆思想
- udp
- socket IPC(本地套接字domain)
- 其他常用函数
- libevent
- libevent简介