[TOC]
# 简介
socket API原本是为网络通讯设计的,但后来在socket的框架上发展出一种IPC机制,就是UNIX Domain Socket。虽然网络socket也可用于同一台主机的进程间通讯(通过loopback地址127.0.0.1),但是UNIX Domain Socket用于IPC更有效率:不需要经过网络协议栈,不需要打包拆包、计算校验和、维护序号和应答等,只是将应用层数据从一个进程拷贝到另一个进程。这是因为,IPC机制本质上是可靠的通讯,而网络协议是为不可靠的通讯设计的。UNIX Domain Socket也提供面向流和面向数据包两种API接口,类似于TCP和UDP,但是面向消息的UNIX Domain Socket也是可靠的,消息既不会丢失也不会顺序错乱。
UNIX Domain Socket是全双工的,API接口语义丰富,相比其它IPC机制有明显的优越性,目前已成为使用最广泛的IPC机制,比如X Window服务器和GUI程序之间就是通过UNIXDomain Socket通讯的。
使用UNIX Domain Socket的过程和网络socket十分相似,也要先调用socket()创建一个socket文件描述符,address family指定为AF_UNIX,type可以选择SOCK_DGRAM或SOCK_STREAM,protocol参数仍然指定为0即可。
UNIX Domain Socket与网络socket编程最明显的不同在于地址格式不同,用结构体sockaddr_un表示,网络编程的socket地址是IP地址加端口号,而UNIX Domain Socket的地址是一个socket类型的文件在文件系统中的路径,这个socket文件由bind()调用创建,如果调用bind()时该文件已存在,则bind()错误返回。
对比网络套接字地址结构和本地套接字地址结构:
~~~
struct sockaddr_in {
__kernel_sa_family_t sin_family; /* Address family */ 地址结构类型
__be16 sin_port; /* Port number */ 端口号
struct in_addr sin_addr; /* Internet address */ IP地址
};
struct sockaddr_un {
__kernel_sa_family_t sun_family; /* AF_UNIX */ 地址结构类型
char sun_path[UNIX_PATH_MAX]; /* pathname */ socket文件名(含路径)
};
~~~
以下程序将UNIX Domain socket绑定到一个地址。
~~~
size = offsetof(struct sockaddr_un, sun_path) + strlen(un.sun_path);
#define offsetof(type, member) ((int)&((type *)0)->member)
~~~
# server
~~~
#include <stdlib.h>
#include <stdio.h>
#include <stddef.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <errno.h>
#define QLEN 10
/*
* Create a server endpoint of a connection.
* Returns fd if all OK, <0 on error.
*/
int serv_listen(const char *name)
{
int fd, len, err, rval;
struct sockaddr_un un;
/* create a UNIX domain stream socket */
if ((fd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0)
return(-1);
/* in case it already exists */
unlink(name);
/* fill in socket address structure */
memset(&un, 0, sizeof(un));
un.sun_family = AF_UNIX;
strcpy(un.sun_path, name);
len = offsetof(struct sockaddr_un, sun_path) + strlen(name);
/* bind the name to the descriptor */
if (bind(fd, (struct sockaddr *)&un, len) < 0) {
rval = -2;
goto errout;
}
if (listen(fd, QLEN) < 0) { /* tell kernel we're a server */
rval = -3;
goto errout;
}
return(fd);
errout:
err = errno;
close(fd);
errno = err;
return(rval);
}
int serv_accept(int listenfd, uid_t *uidptr)
{
int clifd, len, err, rval;
time_t staletime;
struct sockaddr_un un;
struct stat statbuf;
len = sizeof(un);
if ((clifd = accept(listenfd, (struct sockaddr *)&un, &len)) < 0)
return(-1); /* often errno=EINTR, if signal caught */
/* obtain the client's uid from its calling address */
len -= offsetof(struct sockaddr_un, sun_path); /* len of pathname */
un.sun_path[len] = 0; /* null terminate */
if (stat(un.sun_path, &statbuf) < 0) {
rval = -2;
goto errout;
}
if (S_ISSOCK(statbuf.st_mode) == 0) {
rval = -3; /* not a socket */
goto errout;
}
if (uidptr != NULL)
*uidptr = statbuf.st_uid; /* return uid of caller */
/* we're done with pathname now */
unlink(un.sun_path);
return(clifd);
errout:
err = errno;
close(clifd);
errno = err;
return(rval);
}
int main(void)
{
int lfd, cfd, n, i;
uid_t cuid;
char buf[1024];
lfd = serv_listen("foo.socket");
if (lfd < 0) {
switch (lfd) {
case -3:perror("listen"); break;
case -2:perror("bind"); break;
case -1:perror("socket"); break;
}
exit(-1);
}
cfd = serv_accept(lfd, &cuid);
if (cfd < 0) {
switch (cfd) {
case -3:perror("not a socket"); break;
case -2:perror("a bad filename"); break;
case -1:perror("accept"); break;
}
exit(-1);
}
while (1) {
r_again:
n = read(cfd, buf, 1024);
if (n == -1) {
if (errno == EINTR)
goto r_again;
}
else if (n == 0) {
printf("the other side has been closed.\n");
break;
}
for (i = 0; i < n; i++)
buf[i] = toupper(buf[i]);
write(cfd, buf, n);
}
close(cfd);
close(lfd);
return 0;
}
~~~
# client
~~~
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <errno.h>
#define CLI_PATH "/var/tmp/" /* +5 for pid = 14 chars */
/*
* Create a client endpoint and connect to a server.
* Returns fd if all OK, <0 on error.
*/
int cli_conn(const char *name)
{
int fd, len, err, rval;
struct sockaddr_un un;
/* create a UNIX domain stream socket */
if ((fd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0)
return(-1);
/* fill socket address structure with our address */
memset(&un, 0, sizeof(un));
un.sun_family = AF_UNIX;
sprintf(un.sun_path, "%s%05d", CLI_PATH, getpid());
len = offsetof(struct sockaddr_un, sun_path) + strlen(un.sun_path);
/* in case it already exists */
unlink(un.sun_path);
if (bind(fd, (struct sockaddr *)&un, len) < 0) {
rval = -2;
goto errout;
}
/* fill socket address structure with server's address */
memset(&un, 0, sizeof(un));
un.sun_family = AF_UNIX;
strcpy(un.sun_path, name);
len = offsetof(struct sockaddr_un, sun_path) + strlen(name);
if (connect(fd, (struct sockaddr *)&un, len) < 0) {
rval = -4;
goto errout;
}
return(fd);
errout:
err = errno;
close(fd);
errno = err;
return(rval);
}
int main(void)
{
int fd, n;
char buf[1024];
fd = cli_conn("foo.socket");
if (fd < 0) {
switch (fd) {
case -4:perror("connect"); break;
case -3:perror("listen"); break;
case -2:perror("bind"); break;
case -1:perror("socket"); break;
}
exit(-1);
}
while (fgets(buf, sizeof(buf), stdin) != NULL) {
write(fd, buf, strlen(buf));
n = read(fd, buf, sizeof(buf));
write(STDOUT_FILENO, buf, n);
}
close(fd);
return 0;
}
~~~
- c语言
- 基础知识
- 变量和常量
- 宏定义和预处理
- 随机数
- register变量
- errno全局变量
- 静态变量
- 类型
- 数组
- 类型转换
- vs中c4996错误
- 数据类型和长度
- 二进制数,八进制数和十六进制数
- 位域
- typedef定义类型
- 函数和编译
- 函数调用惯例
- 函数进栈和出栈
- 函数
- 编译
- sizeof
- main函数接收参数
- 宏函数
- 目标文件和可执行文件有什么
- 强符号和弱符号
- 什么是链接
- 符号
- 强引用和弱引用
- 字符串处理函数
- sscanf
- 查找子字符串
- 字符串指针
- qt
- MFC
- 指针
- 简介
- 指针详解
- 案例
- 指针数组
- 偏移量
- 间接赋值
- 易错点
- 二级指针
- 结构体指针
- 字节对齐
- 函数指针
- 指针例子
- main接收用户输入
- 内存布局
- 内存分区
- 空间开辟和释放
- 堆空间操作字符串
- 内存处理函数
- 内存分页
- 内存模型
- 栈
- 栈溢出攻击
- 内存泄露
- 大小端存储法
- 寄存器
- 结构体
- 共用体
- 枚举
- 文件操作
- 文件到底是什么
- 文件打开和关闭
- 文件的顺序读写
- 文件的随机读写
- 文件复制
- FILE和缓冲区
- 文件大小
- 插入,删除,更改文件内容
- typeid
- 内部链接和外部链接
- 动态库
- 调试器
- 调试的概念
- vs调试
- 多文件编程
- extern关键字
- 头文件规范
- 标准库以及标准头文件
- 头文件只包含一次
- static
- 多线程
- 简介
- 创建线程threads.h
- 创建线程pthread
- gdb
- 简介
- mac使用gdb
- setjump和longjump
- 零拷贝
- gc
- 调试器原理
- c++
- c++简介
- c++对c的扩展
- ::作用域运算符
- 名字控制
- cpp对c的增强
- const
- 变量定义数组
- 尽量以const替换#define
- 引用
- 内联函数
- 函数默认参数
- 函数占位参数
- 函数重载
- extern "C"
- 类和对象
- 类封装
- 构造和析构
- 深浅拷贝
- explicit关键字
- 动态对象创建
- 静态成员
- 对象模型
- this
- 友元
- 单例
- 继承
- 多态
- 运算符重载
- 赋值重载
- 指针运算符(*,->)重载
- 前置和后置++
- 左移<<运算符重载
- 函数调用符重载
- 总结
- bool重载
- 模板
- 简介
- 普通函数和模板函数调用
- 模板的局限性
- 类模板
- 复数的模板类
- 类模板作为参数
- 类模板继承
- 类模板类内和类外实现
- 类模板和友元函数
- 类模板实现数组
- 类型转换
- 异常
- 异常基本语法
- 异常的接口声明
- 异常的栈解旋
- 异常的多态
- 标准异常库
- 自定义异常
- io
- 流的概念和类库结构
- 标准io流
- 标准输入流
- 标准输出流
- 文件读写
- STL
- 简介
- string容器
- vector容器
- deque容器
- stack容器
- queue容器
- list容器
- set/multiset容器
- map/multimap容器
- pair对组
- 深浅拷贝问题
- 使用时机
- 常用算法
- 函数对象
- 谓词
- 内建函数对象
- 函数对象适配器
- 空间适配器
- 常用遍历算法
- 查找算法
- 排序算法
- 拷贝和替换算法
- 算术生成算法
- 集合算法
- gcc
- GDB
- makefile
- visualstudio
- VisualAssistX
- 各种插件
- utf8编码
- 制作安装项目
- 编译模式
- 内存对齐
- 快捷键
- 自动补全
- 查看c++类内存布局
- FFmpeg
- ffmpeg架构
- 命令的基本格式
- 分解与复用
- 处理原始数据
- 录屏和音
- 滤镜
- 水印
- 音视频的拼接与裁剪
- 视频图片转换
- 直播
- ffplay
- 常见问题
- 多媒体文件处理
- ffmpeg代码结构
- 日志系统
- 处理流数据
- linux
- 系统调用
- 常用IO函数
- 文件操作函数
- 文件描述符复制
- 目录相关操作
- 时间相关函数
- 进程
- valgrind
- 进程通信
- 信号
- 信号产生函数
- 信号集
- 信号捕捉
- SIGCHLD信号
- 不可重入函数和可重入函数
- 进程组
- 会话
- 守护进程
- 线程
- 线程属性
- 互斥锁
- 读写锁
- 条件变量
- 信号量
- 网络
- 分层模型
- 协议格式
- TCP协议
- socket
- socket概念
- 网络字节序
- ip地址转换函数
- sockaddr数据结构
- 网络套接字函数
- socket模型创建流程图
- socket函数
- bind函数
- listen函数
- accept函数
- connect函数
- C/S模型-TCP
- 出错处理封装函数
- 多进程并发服务器
- 多线程并发服务器
- 多路I/O复用服务器
- select
- poll
- epoll
- epoll事件
- epoll例子
- epoll反应堆思想
- udp
- socket IPC(本地套接字domain)
- 其他常用函数
- libevent
- libevent简介