# CNCF - 云原生计算基金会简介
CNCF,全称Cloud Native Computing Foundation(云原生计算基金会),成立与2015年12月11日,其口号是**坚持和整合开源技术来让编排容器作为微服务架构的一部分**,其作为致力于云原生应用推广和普及的一支重要力量,不论您是云原生应用的开发者、管理者还是研究人员都有必要了解。
CNCF作为一个厂商中立的基金会,致力于Github上的快速成长的开源技术的推广,如Kubernetes、Prometheus、Envoy等,帮助开发人员更快更好的构建出色的产品。
下图是CNCF的全景图。
![CNCF landscape](https://ws3.sinaimg.cn/large/006tNbRwly1fxmx633ymqj31dp0u0kjn.jpg)
该全景图不断更新中,原图请见:https://github.com/cncf/landscape
其中包含了CNCF中托管的项目,还有很多是非CNCF项目。
关于CNCF的使命与组织方式请参考[CNCF章程](https://www.cncf.io/about/charter/),概括的讲CNCF的使命包括以下三点:
* 容器化包装。
* 通过中心编排系统的动态资源管理。
* 面向微服务。
CNCF这个角色的作用是推广技术,形成社区,开源项目管理与推进生态系统健康发展。
另外CNCF组织由以下部分组成:
* **会员**:白金、金牌、银牌、最终用户、学术和非赢利成员,不同级别的会员在治理委员会中的投票权不同。
* **理事会**:负责事务管理
* **TOC(技术监督委员会)**:技术管理
* **最终用户社区**:推动CNCF技术的采纳并选举最终用户技术咨询委员会
* **最终用户技术咨询委员会**:为最终用户会议或向理事会提供咨询
* **营销委员会**:市场推广
## CNCF项目成熟度分级与毕业条件
每个CNCF项目都需要有个成熟度等级,申请成为CNCF项目的时候需要确定项目的成熟度级别。
成熟度级别(Maturity Level)包括以下三种:
* sandbox(初级)
* incubating(孵化中)
* graduated(毕业)
是否可以成为CNCF项目需要通过Technical Oversight Committee \(技术监督委员会)简称[TOC](https://github.com/cncf/toc),投票采取fallback策略,即**回退策略**,先从最高级别(graduated)开始,如果2/3多数投票通过的话则确认为该级别,如果没通过的话,则进行下一低级别的投票,如果一直到inception级别都没得到2/3多数投票通过的话,则拒绝其进入CNCF项目。
当前所有的CNCF项目可以访问[https://www.cncf.io/projects/](https://www.cncf.io/projects/) 。
项目所达到相应成熟度需要满足的条件和投票机制见下图:
![CNCF项目成熟度级别](https://box.kancloud.cn/d592b2fd238496fd1f593ca9f8cb4489_1056x714.jpg)
## TOC(技术监督委员会)
TOC(Technical Oversight Committee)作为CNCF中的一个重要组织,它的作用是:
* 定义和维护技术视野
* 审批新项目加入组织,为项目设定概念架构
* 接受最终用户的反馈并映射到项目中
* 调整组件见的访问接口,协调组件之间兼容性
TOC成员通过选举产生,见[选举时间表](https://github.com/cncf/toc/blob/master/process/election-schedule.md)。
参考CNCF TOC:[https://github.com/cncf/toc](https://github.com/cncf/toc)
## 参考
* [https://www.cncf.io](https://www.cncf.io)
* [https://www.cncf.io/about/charter/](https://www.cncf.io/about/charter/)
* [https://github.com/cncf/landscape](https://github.com/cncf/landscape)
* [https://github.com/cncf/toc](https://github.com/cncf/toc)
- 序言
- 云原生
- 云原生(Cloud Native)的定义
- CNCF - 云原生计算基金会简介
- CNCF章程
- 云原生的设计哲学
- Play with Kubernetes
- 快速部署一个云原生本地实验环境
- Kubernetes与云原生应用概览
- 云原生应用之路——从Kubernetes到Cloud Native
- 云原生编程语言
- 云原生编程语言Ballerina
- 云原生编程语言Pulumi
- 云原生的未来
- Kubernetes架构
- 设计理念
- Etcd解析
- 开放接口
- CRI - Container Runtime Interface(容器运行时接口)
- CNI - Container Network Interface(容器网络接口)
- CSI - Container Storage Interface(容器存储接口)
- Kubernetes中的网络
- Kubernetes中的网络解析——以flannel为例
- Kubernetes中的网络解析——以calico为例
- 具备API感知的网络和安全性管理开源软件Cilium
- Cilium架构设计与概念解析
- 资源对象与基本概念解析
- Pod状态与生命周期管理
- Pod概览
- Pod解析
- Init容器
- Pause容器
- Pod安全策略
- Pod的生命周期
- Pod Hook
- Pod Preset
- Pod中断与PDB(Pod中断预算)
- 集群资源管理
- Node
- Namespace
- Label
- Annotation
- Taint和Toleration(污点和容忍)
- 垃圾收集
- 控制器
- Deployment
- StatefulSet
- DaemonSet
- ReplicationController和ReplicaSet
- Job
- CronJob
- Horizontal Pod Autoscaling
- 自定义指标HPA
- 准入控制器(Admission Controller)
- 服务发现
- Service
- Ingress
- Traefik Ingress Controller
- 身份与权限控制
- ServiceAccount
- RBAC——基于角色的访问控制
- NetworkPolicy
- 存储
- Secret
- ConfigMap
- ConfigMap的热更新
- Volume
- Persistent Volume(持久化卷)
- Storage Class
- 本地持久化存储
- 集群扩展
- 使用自定义资源扩展API
- 使用CRD扩展Kubernetes API
- Aggregated API Server
- APIService
- Service Catalog
- 资源调度
- QoS(服务质量等级)
- 用户指南
- 资源对象配置
- 配置Pod的liveness和readiness探针
- 配置Pod的Service Account
- Secret配置
- 管理namespace中的资源配额
- 命令使用
- Docker用户过度到kubectl命令行指南
- kubectl命令概览
- kubectl命令技巧大全
- 使用etcdctl访问kubernetes数据
- 集群安全性管理
- 管理集群中的TLS
- kubelet的认证授权
- TLS bootstrap
- 创建用户认证授权的kubeconfig文件
- IP伪装代理
- 使用kubeconfig或token进行用户身份认证
- Kubernetes中的用户与身份认证授权
- Kubernetes集群安全性配置最佳实践
- 访问Kubernetes集群
- 访问集群
- 使用kubeconfig文件配置跨集群认证
- 通过端口转发访问集群中的应用程序
- 使用service访问群集中的应用程序
- 从外部访问Kubernetes中的Pod
- Cabin - Kubernetes手机客户端
- Kubernetic - Kubernetes桌面客户端
- Kubernator - 更底层的Kubernetes UI
- 在Kubernetes中开发部署应用
- 适用于kubernetes的应用开发部署流程
- 迁移传统应用到Kubernetes中——以Hadoop YARN为例
- 最佳实践概览
- 在CentOS上部署Kubernetes集群
- 创建TLS证书和秘钥
- 创建kubeconfig文件
- 创建高可用etcd集群
- 安装kubectl命令行工具
- 部署master节点
- 安装flannel网络插件
- 部署node节点
- 安装kubedns插件
- 安装dashboard插件
- 安装heapster插件
- 安装EFK插件
- 生产级的Kubernetes简化管理工具kubeadm
- 使用kubeadm在Ubuntu Server 16.04上快速构建测试集群
- 服务发现与负载均衡
- 安装Traefik ingress
- 分布式负载测试
- 网络和集群性能测试
- 边缘节点配置
- 安装Nginx ingress
- 安装配置DNS
- 安装配置Kube-dns
- 安装配置CoreDNS
- 运维管理
- Master节点高可用
- 服务滚动升级
- 应用日志收集
- 配置最佳实践
- 集群及应用监控
- 数据持久化问题
- 管理容器的计算资源
- 集群联邦
- 存储管理
- GlusterFS
- 使用GlusterFS做持久化存储
- 使用Heketi作为Kubernetes的持久存储GlusterFS的external provisioner
- 在OpenShift中使用GlusterFS做持久化存储
- GlusterD-2.0
- Ceph
- 用Helm托管安装Ceph集群并提供后端存储
- 使用Ceph做持久化存储
- 使用rbd-provisioner提供rbd持久化存储
- OpenEBS
- 使用OpenEBS做持久化存储
- Rook
- NFS
- 利用NFS动态提供Kubernetes后端存储卷
- 集群与应用监控
- Heapster
- 使用Heapster获取集群和对象的metric数据
- Prometheus
- 使用Prometheus监控kubernetes集群
- Prometheus查询语言PromQL使用说明
- 使用Vistio监控Istio服务网格中的流量
- 分布式跟踪
- OpenTracing
- 服务编排管理
- 使用Helm管理Kubernetes应用
- 构建私有Chart仓库
- 持续集成与发布
- 使用Jenkins进行持续集成与发布
- 使用Drone进行持续集成与发布
- 更新与升级
- 手动升级Kubernetes集群
- 升级dashboard
- 领域应用概览
- 微服务架构
- 微服务中的服务发现
- 使用Java构建微服务并发布到Kubernetes平台
- Spring Boot快速开始指南
- Service Mesh 服务网格
- 企业级服务网格架构
- Service Mesh基础
- Service Mesh技术对比
- 采纳和演进
- 定制和集成
- 总结
- Istio
- 安装并试用Istio service mesh
- 配置请求的路由规则
- 安装和拓展Istio service mesh
- 集成虚拟机
- Istio中sidecar的注入规范及示例
- 如何参与Istio社区及注意事项
- Istio教程
- Istio免费学习资源汇总
- 深入理解Istio Service Mesh中的Envoy Sidecar注入与流量劫持
- 深入理解Istio Service Mesh中的Envoy Sidecar代理的路由转发
- Linkerd
- Linkerd 使用指南
- Conduit
- Condiut概览
- 安装Conduit
- Envoy
- Envoy的架构与基本术语
- Envoy作为前端代理
- Envoy mesh教程
- SOFAMesh
- SOFAMesh中的Dubbo on x-protocol
- SOFAMosn
- 使用 SOFAMosn 构建 SOFAMesh
- 大数据
- Spark standalone on Kubernetes
- 运行支持Kubernetes原生调度的Spark程序
- Serverless架构
- 理解Serverless
- FaaS-函数即服务
- OpenFaaS快速入门指南
- 边缘计算
- 人工智能