# 迁移传统应用到Kubernetes步骤详解——以Hadoop YARN为例
本文档不是说明如何在 kubernetes 中开发和部署应用程序,如果您想要直接开发应用程序在 kubernetes 中运行可以参考 [适用于kubernetes的应用开发部署流程](deploy-applications-in-kubernetes.md)。
本文旨在说明如何将已有的应用程序尤其是传统的分布式应用程序迁移到 kubernetes 中。如果该类应用程序符合云原生应用规范(如12因素法则)的话,那么迁移会比较顺利,否则会遇到一些麻烦甚至是阻碍。具体请参考 [迁移至云原生应用架构](https://github.com/rootsongjc/migrating-to-cloud-native-application-architectures)。
下图是将单体应用迁移到云原生的步骤。
![将单体应用迁移到云原生(图片来自DevOpsDay Toronto)](https://box.kancloud.cn/4081d81fb772cd686980df434e54847c_4096x2098.jpg)
接下来我们将以 Spark on YARN with kubernetes 为例来说明,该例子足够复杂也很有典型性,了解了这个例子可以帮助大家将自己的应用迁移到 kubernetes 集群上去,代码和配置文件可以在 [这里](https://github.com/rootsongjc/kube-yarn) 找到(本文中加入 Spark 的配置,代码中并没有包含,读者可以自己配置)。
下图即整个架构的示意图,代码和详细配置文件请参考 [kube-yarn](https://github.com/rootsongjc/kube-yarn)(不包含 ingress、spark 配置),所有的进程管理和容器扩容直接使用 Makefile。
![spark on yarn with kubernetes](https://box.kancloud.cn/466435f9855490eb0abb9c78ea923de4_2395x1156.png)
**注意: 该例子仅用来说明具体的步骤划分和复杂性,在生产环境应用还有待验证,请谨慎使用。**
## 术语
对于为曾接触过 kubernetes 或对云平台的技术细节不太了解的人来说,如何将应用迁移到 kubernetes 中可能是个头疼的问题,在行动之前有必要先了解整个过程中需要用到哪些概念和术语,有助于大家在行动中达成共识。
过程中可能用到的概念和术语初步整理如下:
![Terms](https://box.kancloud.cn/862fc82a59225dd894ed24894cb2a03a_1312x1766.png)
为了讲解整改过程和具体细节,我们所有操作都是通过命令手动完成,不使用自动化工具。当您充分了解到其中的细节后可以通过自动化工具来优化该过程,以使其更加自动和高效,同时减少因为人为操作失误导致的迁移失败。
## 迁移应用
![分解步骤解析](https://box.kancloud.cn/85b428642e48710d492e4c3a95e999fc_967x462.png)
整个迁移过程分为如下几个步骤:
1. **将原有应用拆解为服务**
我们不是一上来就开始做镜像,写配置,而是应该先梳理下要迁移的应用中有哪些可以作为服务运行,哪些是变的,哪些是不变的部分。
服务划分的原则是最小可变原则,这个同样适用于镜像制作,将服务中不变的部分编译到同一个镜像中。
对于像 Spark on YARN 这样复杂的应用,可以将其划分为三大类服务:
- ResourceManager
- NodeManager
- Spark client
2. **制作镜像**
根据拆解出来的服务,我们需要制作两个镜像:
- Hadoop
- Spark (From hadoop docker image)
因为我们运行的是 Spark on YARN,因此 Spark 依赖与 Hadoop 镜像,我们在 Spark 的基础上包装了一个 web service 作为服务启动。
镜像制作过程中不需要在 Dockerfile 中指定 Entrypoint 和 CMD,这些都是在 kubernetes 的 YAML 文件中指定的。
Hadoop YARN 的 Dockerfile 参考如下配置。
```docker
FROM my-docker-repo/jdk:7u80
# Add native libs
ARG HADOOP_VERSION=2.6.0-cdh5.5.2
## Prefer to download from server not use local storage
ADD hadoop-${HADOOP_VERSION}.tar.gz /usr/local
ADD ./lib/* /usr/local/hadoop-${HADOOP_VERSION}/lib/native/
ADD ./jars/* /usr/local/hadoop-${HADOOP_VERSION}/share/hadoop/yarn/
ENV HADOOP_PREFIX=/usr/local/hadoop \
HADOOP_COMMON_HOME=/usr/local/hadoop \
HADOOP_HDFS_HOME=/usr/local/hadoop \
HADOOP_MAPRED_HOME=/usr/local/hadoop \
HADOOP_YARN_HOME=/usr/local/hadoop \
HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop \
YARN_CONF_DIR=/usr/local/hadoop/etc/hadoop \
PATH=${PATH}:/usr/local/hadoop/bin
RUN \
cd /usr/local && ln -s ./hadoop-${HADOOP_VERSION} hadoop && \
rm -f ${HADOOP_PREFIX}/logs/*
WORKDIR $HADOOP_PREFIX
# Hdfs ports
EXPOSE 50010 50020 50070 50075 50090 8020 9000
# Mapred ports
EXPOSE 19888
#Yarn ports
EXPOSE 8030 8031 8032 8033 8040 8042 8088
#Other ports
EXPOSE 49707 2122
```
3. **准备应用的配置文件**
因为我们只制作了一个 Hadoop 的镜像,而需要启动两个服务,这就要求在服务启动的时候必须加载不同的配置文件,现在我们只需要准备两个服务中需要同时用的的配置的部分。
YARN 依赖的配置在 `artifacts` 目录下,包含以下文件:
```
bootstrap.sh
capacity-scheduler.xml
container-executor.cfg
core-site.xml
hadoop-env.sh
hdfs-site.xml
log4j.properties
mapred-site.xml
nodemanager_exclude.txt
slaves
start-yarn-nm.sh
start-yarn-rm.sh
yarn-env.sh
yarn-site.xml
```
其中作为 bootstrap 启动脚本的 `bootstrap.sh` 也包含在该目录下,该脚本的如何编写请见下文。
4. **Kubernetes YAML 文件**
根据业务的特性选择最适合的 kubernetes 的资源对象来运行,因为在 YARN 中 NodeManager 需要使用主机名向 ResourceManger 注册,因此需要沿用 YARN 原有的服务发现方式,使用 headless service 和 StatefulSet 资源。更多资料请参考 [StatefulSet](../concepts/statefulset.md)。
所有的 Kubernetes YAML 配置文件存储在 `manifest` 目录下,包括如下配置:
- yarn-cluster 的 namespace 配置
- Spark、ResourceManager、NodeManager 的 headless service 和 StatefulSet 配置
- 需要暴露到 kubernetes 集群外部的 ingress 配置(ResourceManager 的 Web)
```
kube-yarn-ingress.yaml
spark-statefulset.yaml
yarn-cluster-namespace.yaml
yarn-nm-statefulset.yaml
yarn-rm-statefulset.yaml
```
5. **Bootstrap 脚本**
Bootstrap 脚本的作用是在启动时根据 Pod 的环境变量、主机名或其他可以区分不同 Pod 和将启动角色的变量来修改配置文件和启动服务应用。
该脚本同时将原来 YARN 的日志使用 stdout 输出,便于使用 `kubectl logs` 查看日志或其他日志收集工具进行日志收集。
启动脚本 `bootstrap.sh` 跟 Hadoop 的配置文件同时保存在 `artifacts` 目录下。
该脚本根据 Pod 的主机名,决定如何修改 Hadoop 的配置文件和启动何种服务。`bootstrap.sh` 文件的部分代码如下:
```bash
if [[ "${HOSTNAME}" =~ "yarn-nm" ]]; then
sed -i '/<\/configuration>/d' $HADOOP_PREFIX/etc/hadoop/yarn-site.xml
cat >> $HADOOP_PREFIX/etc/hadoop/yarn-site.xml <<- EOM
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>${MY_MEM_LIMIT:-2048}</value>
</property>
<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>${MY_CPU_LIMIT:-2}</value>
</property>
EOM
echo '</configuration>' >> $HADOOP_PREFIX/etc/hadoop/yarn-site.xml
cp ${CONFIG_DIR}/start-yarn-nm.sh $HADOOP_PREFIX/sbin/
cd $HADOOP_PREFIX/sbin
chmod +x start-yarn-nm.sh
./start-yarn-nm.sh
fi
if [[ $1 == "-d" ]]; then
until find ${HADOOP_PREFIX}/logs -mmin -1 | egrep -q '.*'; echo "`date`: Waiting for logs..." ; do sleep 2 ; done
tail -F ${HADOOP_PREFIX}/logs/* &
while true; do sleep 1000; done
fi
```
从这部分中代码中可以看到,如果 Pod 的主机名中包含 `yarn-nm` 字段则向 `yarn-site.xml` 配置文件中增加如下内容:
```xml
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>${MY_MEM_LIMIT:-2048}</value>
</property>
<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>${MY_CPU_LIMIT:-2}</value>
</property>
```
其中 `MY_MEM_LIMIT` 和 `MY_CPU_LIMIT` 是 kubernetes YAML 中定义的环境变量,该环境变量又是引用的 Resource limit。
所有的配置准备完成后,执行 `start-yarn-nm.sh` 脚本启动 NodeManager。
如果 kubernetes YAML 中的 container CMD args 中包含 `-d` 则在后台运行 NodeManger 并 tail 输出 NodeManager 的日志到标准输出。
6. **ConfigMaps**
将 Hadoop 的配置文件和 bootstrap 脚本作为 ConfigMap 资源保存,用作 Pod 启动时挂载的 volume。
```bash
kubectl create configmap hadoop-config \
--from-file=artifacts/hadoop/bootstrap.sh \
--from-file=artifacts/hadoop/start-yarn-rm.sh \
--from-file=artifacts/hadoop/start-yarn-nm.sh \
--from-file=artifacts/hadoop/slaves \
--from-file=artifacts/hadoop/core-site.xml \
--from-file=artifacts/hadoop/hdfs-site.xml \
--from-file=artifacts/hadoop/mapred-site.xml \
--from-file=artifacts/hadoop/yarn-site.xml \
--from-file=artifacts/hadoop/capacity-scheduler.xml \
--from-file=artifacts/hadoop/container-executor.cfg \
--from-file=artifacts/hadoop/hadoop-env.sh \
--from-file=artifacts/hadoop/log4j.properties \
--from-file=artifacts/hadoop/nodemanager_exclude.txt \
--from-file=artifacts/hadoop/yarn-env.sh
kubectl create configmap spark-config \
--from-file=artifacts/spark/spark-bootstrap.sh \
--from-file=artifacts/spark/spark-env.sh \
--from-file=artifacts/spark/spark-defaults.conf
```
所有的配置完成后,可以可以使用 kubectl 命令来启动和管理集群了,我们编写了 Makefile,您可以直接使用该 Makefile 封装的命令实现部分的自动化。
- 序言
- 云原生
- 云原生(Cloud Native)的定义
- CNCF - 云原生计算基金会简介
- CNCF章程
- 云原生的设计哲学
- Play with Kubernetes
- 快速部署一个云原生本地实验环境
- Kubernetes与云原生应用概览
- 云原生应用之路——从Kubernetes到Cloud Native
- 云原生编程语言
- 云原生编程语言Ballerina
- 云原生编程语言Pulumi
- 云原生的未来
- Kubernetes架构
- 设计理念
- Etcd解析
- 开放接口
- CRI - Container Runtime Interface(容器运行时接口)
- CNI - Container Network Interface(容器网络接口)
- CSI - Container Storage Interface(容器存储接口)
- Kubernetes中的网络
- Kubernetes中的网络解析——以flannel为例
- Kubernetes中的网络解析——以calico为例
- 具备API感知的网络和安全性管理开源软件Cilium
- Cilium架构设计与概念解析
- 资源对象与基本概念解析
- Pod状态与生命周期管理
- Pod概览
- Pod解析
- Init容器
- Pause容器
- Pod安全策略
- Pod的生命周期
- Pod Hook
- Pod Preset
- Pod中断与PDB(Pod中断预算)
- 集群资源管理
- Node
- Namespace
- Label
- Annotation
- Taint和Toleration(污点和容忍)
- 垃圾收集
- 控制器
- Deployment
- StatefulSet
- DaemonSet
- ReplicationController和ReplicaSet
- Job
- CronJob
- Horizontal Pod Autoscaling
- 自定义指标HPA
- 准入控制器(Admission Controller)
- 服务发现
- Service
- Ingress
- Traefik Ingress Controller
- 身份与权限控制
- ServiceAccount
- RBAC——基于角色的访问控制
- NetworkPolicy
- 存储
- Secret
- ConfigMap
- ConfigMap的热更新
- Volume
- Persistent Volume(持久化卷)
- Storage Class
- 本地持久化存储
- 集群扩展
- 使用自定义资源扩展API
- 使用CRD扩展Kubernetes API
- Aggregated API Server
- APIService
- Service Catalog
- 资源调度
- QoS(服务质量等级)
- 用户指南
- 资源对象配置
- 配置Pod的liveness和readiness探针
- 配置Pod的Service Account
- Secret配置
- 管理namespace中的资源配额
- 命令使用
- Docker用户过度到kubectl命令行指南
- kubectl命令概览
- kubectl命令技巧大全
- 使用etcdctl访问kubernetes数据
- 集群安全性管理
- 管理集群中的TLS
- kubelet的认证授权
- TLS bootstrap
- 创建用户认证授权的kubeconfig文件
- IP伪装代理
- 使用kubeconfig或token进行用户身份认证
- Kubernetes中的用户与身份认证授权
- Kubernetes集群安全性配置最佳实践
- 访问Kubernetes集群
- 访问集群
- 使用kubeconfig文件配置跨集群认证
- 通过端口转发访问集群中的应用程序
- 使用service访问群集中的应用程序
- 从外部访问Kubernetes中的Pod
- Cabin - Kubernetes手机客户端
- Kubernetic - Kubernetes桌面客户端
- Kubernator - 更底层的Kubernetes UI
- 在Kubernetes中开发部署应用
- 适用于kubernetes的应用开发部署流程
- 迁移传统应用到Kubernetes中——以Hadoop YARN为例
- 最佳实践概览
- 在CentOS上部署Kubernetes集群
- 创建TLS证书和秘钥
- 创建kubeconfig文件
- 创建高可用etcd集群
- 安装kubectl命令行工具
- 部署master节点
- 安装flannel网络插件
- 部署node节点
- 安装kubedns插件
- 安装dashboard插件
- 安装heapster插件
- 安装EFK插件
- 生产级的Kubernetes简化管理工具kubeadm
- 使用kubeadm在Ubuntu Server 16.04上快速构建测试集群
- 服务发现与负载均衡
- 安装Traefik ingress
- 分布式负载测试
- 网络和集群性能测试
- 边缘节点配置
- 安装Nginx ingress
- 安装配置DNS
- 安装配置Kube-dns
- 安装配置CoreDNS
- 运维管理
- Master节点高可用
- 服务滚动升级
- 应用日志收集
- 配置最佳实践
- 集群及应用监控
- 数据持久化问题
- 管理容器的计算资源
- 集群联邦
- 存储管理
- GlusterFS
- 使用GlusterFS做持久化存储
- 使用Heketi作为Kubernetes的持久存储GlusterFS的external provisioner
- 在OpenShift中使用GlusterFS做持久化存储
- GlusterD-2.0
- Ceph
- 用Helm托管安装Ceph集群并提供后端存储
- 使用Ceph做持久化存储
- 使用rbd-provisioner提供rbd持久化存储
- OpenEBS
- 使用OpenEBS做持久化存储
- Rook
- NFS
- 利用NFS动态提供Kubernetes后端存储卷
- 集群与应用监控
- Heapster
- 使用Heapster获取集群和对象的metric数据
- Prometheus
- 使用Prometheus监控kubernetes集群
- Prometheus查询语言PromQL使用说明
- 使用Vistio监控Istio服务网格中的流量
- 分布式跟踪
- OpenTracing
- 服务编排管理
- 使用Helm管理Kubernetes应用
- 构建私有Chart仓库
- 持续集成与发布
- 使用Jenkins进行持续集成与发布
- 使用Drone进行持续集成与发布
- 更新与升级
- 手动升级Kubernetes集群
- 升级dashboard
- 领域应用概览
- 微服务架构
- 微服务中的服务发现
- 使用Java构建微服务并发布到Kubernetes平台
- Spring Boot快速开始指南
- Service Mesh 服务网格
- 企业级服务网格架构
- Service Mesh基础
- Service Mesh技术对比
- 采纳和演进
- 定制和集成
- 总结
- Istio
- 安装并试用Istio service mesh
- 配置请求的路由规则
- 安装和拓展Istio service mesh
- 集成虚拟机
- Istio中sidecar的注入规范及示例
- 如何参与Istio社区及注意事项
- Istio教程
- Istio免费学习资源汇总
- 深入理解Istio Service Mesh中的Envoy Sidecar注入与流量劫持
- 深入理解Istio Service Mesh中的Envoy Sidecar代理的路由转发
- Linkerd
- Linkerd 使用指南
- Conduit
- Condiut概览
- 安装Conduit
- Envoy
- Envoy的架构与基本术语
- Envoy作为前端代理
- Envoy mesh教程
- SOFAMesh
- SOFAMesh中的Dubbo on x-protocol
- SOFAMosn
- 使用 SOFAMosn 构建 SOFAMesh
- 大数据
- Spark standalone on Kubernetes
- 运行支持Kubernetes原生调度的Spark程序
- Serverless架构
- 理解Serverless
- FaaS-函数即服务
- OpenFaaS快速入门指南
- 边缘计算
- 人工智能