# 使用Heketi作为kubernetes的持久存储GlusterFS的external provisioner(Kubernetes集成GlusterFS集群和Heketi)
本文翻译自[heketi的github网址官方文档](https://github.com/heketi/heketi/blob/master/docs/admin/install-kubernetes.md )(大部分为google翻译,少许人工调整,括号内为个人注解)其中注意事项部分为其他网上查询所得。
本文的整个过程将在kubernetes集群上的3个或以上节点安装glusterfs的服务端集群(DaemonSet方式),并将heketi以deployment的方式部署到kubernetes集群。在我的示例部分有StorageClass和PVC的样例。本文介绍的Heketi,GlusterFS这2个组件与kubernetes集成只适合用于测试验证环境,并不适合生产环境,请注意这一点。
Heketi是一个具有resetful接口的glusterfs管理程序,作为kubernetes的Storage存储的external provisioner。
“Heketi提供了一个RESTful管理界面,可用于管理GlusterFS卷的生命周期。借助Heketi,像OpenStack Manila,Kubernetes和OpenShift这样的云服务可以动态地配置GlusterFS卷和任何支持的持久性类型。Heketi将自动确定整个集群的brick位置,确保将brick及其副本放置在不同的故障域中。Heketi还支持任意数量的GlusterFS集群,允许云服务提供网络文件存储,而不受限于单个GlusterFS集群。”
## 注意事项
* 安装Glusterfs客户端:每个kubernetes集群的节点需要安装gulsterfs的客户端,如ubuntu系统的`apt-get install glusterfs-client`。
* 加载内核模块:每个kubernetes集群的节点运行`modprobe dm_thin_pool`,加载内核模块。
* 至少三个slave节点:至少需要3个kubernetes slave节点用来部署glusterfs集群,并且这3个slave节点每个节点需要至少一个空余的磁盘。
## 概述
本指南支持在Kubernetes集群中集成,部署和管理GlusterFS 容器化的存储节点。这使得Kubernetes管理员可以为其用户提供可靠的共享存储。
跟这个话题相关的另一个重要资源是[gluster-kubernetes](https://github.com/gluster/gluster-kubernetes) 项目。它专注于在Kubernetes集群中部署GlusterFS,并提供简化的工具来完成此任务。它包含一个安装指南 [setup guide](https://github.com/gluster/gluster-kubernetes/blob/master/docs/setup-guide.md)。它还包括一个样例 [Hello World](https://github.com/gluster/gluster-kubernetes/tree/master/docs/examples/hello_world)。其中包含一个使用动态配置(dynamically-provisioned)的GlusterFS卷进行存储的Web server pod示例。对于那些想要测试或学习更多关于此主题的人,请按照主[README](https://github.com/gluster/gluster-kubernetes) 的快速入门说明 进行操作。
本指南旨在展示Heketi在Kubernetes环境中管理Gluster的最简单示例。这是为了强调这种配置的主要组成组件,因此并不适合生产环境。
## 基础设施要求
* 正在运行的Kubernetes集群,至少有三个Kubernetes工作节点,每个节点至少有一个可用的裸块设备(如EBS卷或本地磁盘).
* 用于运行GlusterFS Pod的三个Kubernetes节点必须为GlusterFS通信打开相应的端口(如果开启了防火墙的情况下,没开防火墙就不需要这些操作)。在每个节点上运行以下命令。
```bash
iptables -N heketi
iptables -A heketi -p tcp -m state --state NEW -m tcp --dport 24007 -j ACCEPT
iptables -A heketi -p tcp -m state --state NEW -m tcp --dport 24008 -j ACCEPT
iptables -A heketi -p tcp -m state --state NEW -m tcp --dport 2222 -j ACCEPT
iptables -A heketi -p tcp -m state --state NEW -m multiport --dports 49152:49251 -j ACCEPT
service iptables save
```
## 客户端安装
Heketi提供了一个CLI客户端,为用户提供了一种管理Kubernetes中GlusterFS的部署和配置的方法。 在客户端机器上下载并安装[Download and install the heketi-cli](https://github.com/heketi/heketi/releases)。
## Glusterfs和Heketi在Kubernetes集群中的部署过程
以下所有文件都位于下方extras/kubernetes (`git clone https://github.com/heketi/heketi.git`)。
* 部署 GlusterFS DaemonSet
```bash
$ kubectl create -f glusterfs-daemonset.json
```
* 通过运行如下命令获取节点名称:
```bash
$ kubectl get nodes
```
* 通过设置storagenode=glusterfs节点上的标签,将gluster容器部署到指定节点上。
```bash
$ kubectl label node <...node...> storagenode=glusterfs
```
根据需要重复打标签的步骤。验证Pod在节点上运行至少应运行3个Pod(因此至少需要给3个节点打标签)。
```bash
$ kubectl get pods
```
* 接下来,我们将为Heketi创建一个服务帐户(service-account):
```bash
$ kubectl create -f heketi-service-account.json
```
* 我们现在必须给该服务帐户的授权绑定相应的权限来控制gluster的pod。我们通过为我们新创建的服务帐户创建群集角色绑定(cluster role binding)来完成此操作。
```bash
$ kubectl create clusterrolebinding heketi-gluster-admin --clusterrole=edit --serviceaccount=default:heketi-service-account
```
* 现在我们需要创建一个Kubernetes secret来保存我们Heketi实例的配置。必须将配置文件的执行程序设置为 kubernetes才能让Heketi server控制gluster pod(配置文件的默认配置)。除此这些,可以尝试配置的其他选项。
```bash
$ kubectl create secret generic heketi-config-secret --from-file=./heketi.json
```
* 接下来,我们需要部署一个初始(bootstrap)Pod和一个服务来访问该Pod。在你用git克隆的repo中,会有一个heketi-bootstrap.json文件。
提交文件并验证一切正常运行,如下所示:
```bash
# kubectl create -f heketi-bootstrap.json
service "deploy-heketi" created
deployment "deploy-heketi" created
# kubectl get pods
NAME READY STATUS RESTARTS AGE
deploy-heketi-1211581626-2jotm 1/1 Running 0 35m
glusterfs-ip-172-20-0-217.ec2.internal-1217067810-4gsvx 1/1 Running 0 1h
glusterfs-ip-172-20-0-218.ec2.internal-2001140516-i9dw9 1/1 Running 0 1h
glusterfs-ip-172-20-0-219.ec2.internal-2785213222-q3hba 1/1 Running 0 1h
```
* 当Bootstrap heketi服务正在运行,我们配置端口转发,以便我们可以使用Heketi CLI与服务进行通信。使用heketi pod的名称,运行下面的命令:
`kubectl port-forward deploy-heketi-1211581626-2jotm :8080`
如果在运行命令的系统上本地端口8080是空闲的,则可以运行port-forward命令,以便绑定到8080以方便使用(2个命令二选一即可,我选择第二个):
`kubectl port-forward deploy-heketi-1211581626-2jotm 8080:8080`
现在通过对Heketi服务运行示例查询来验证端口转发是否正常。该命令应该已经打印了将从其转发的本地端口。将其合并到URL中以测试服务,如下所示:
```bash
curl http://localhost:8080/hello
Handling connection for 8080
Hello from heketi
```
最后,为Heketi CLI客户端设置一个环境变量,以便它知道Heketi服务器的地址。
`export HEKETI_CLI_SERVER=http://localhost:8080`
* 接下来,我们将向Heketi提供有关要管理的GlusterFS集群的信息。通过拓扑文件提供这些信息。克隆的repo中有一个示例拓扑文件,名为topology-sample.json。拓扑指定运行GlusterFS容器的Kubernetes节点以及每个节点的相应原始块设备。
确保hostnames/manage指向如下所示的确切名称kubectl get nodes得到的主机名(如ubuntu-1),并且hostnames/storage是存储网络的IP地址(对应ubuntu-1的ip地址)。
**IMPORTANT**: 重要提示,目前,必须使用与服务器版本匹配的Heketi-cli版本加载拓扑文件。另外,Heketi pod 带有可以通过 `kubectl exec ...`访问的heketi-cli副本。
修改拓扑文件以反映您所做的选择,然后如下所示部署它(修改主机名,IP,block 设备的名称 如xvdg):
```bash
heketi-client/bin/heketi-cli topology load --json=topology-sample.json
Handling connection for 57598
Found node ip-172-20-0-217.ec2.internal on cluster e6c063ba398f8e9c88a6ed720dc07dd2
Adding device /dev/xvdg ... OK
Found node ip-172-20-0-218.ec2.internal on cluster e6c063ba398f8e9c88a6ed720dc07dd2
Adding device /dev/xvdg ... OK
Found node ip-172-20-0-219.ec2.internal on cluster e6c063ba398f8e9c88a6ed720dc07dd2
Adding device /dev/xvdg ... OK
```
* 接下来,我们将使用heketi为其存储其数据库提供一个卷(不要怀疑,就是使用这个命令,openshift和kubernetes通用,此命令生成heketi-storage.json文件):
```bash
# heketi-client/bin/heketi-cli setup-openshift-heketi-storage
# kubectl create -f heketi-storage.json
```
> Pitfall: 注意,如果在运行setup-openshift-heketi-storage子命令时heketi-cli报告“无空间”错误,则可能无意中运行topology load命令的时候服务端和heketi-cli的版本不匹配造成的。停止正在运行的heketi pod(kubectl scale deployment deploy-heketi --replicas=0),手动删除存储块设备中的任何签名,然后继续运行heketi pod(kubectl scale deployment deploy-heketi --replicas=1)。然后用匹配版本的heketi-cli重新加载拓扑,然后重试该步骤。
* 等到作业完成后,删除bootstrap Heketi实例相关的组件:
```bash
# kubectl delete all,service,jobs,deployment,secret --selector="deploy-heketi"
```
* 创建长期使用的Heketi实例(存储持久化的):
```bash
# kubectl create -f heketi-deployment.json
service "heketi" created
deployment "heketi" created
```
* 这样做了以后,heketi db将使用GlusterFS卷,并且每当heketi pod重新启动时都不会重置(数据不会丢失,存储持久化)。
使用诸如heketi-cli cluster list和的命令heketi-cli volume list 来确认先前建立的集群存在,并且heketi可以列出在bootstrap阶段创建的db存储卷。
# 使用样例
有两种方法来调配存储。常用的方法是设置一个StorageClass,让Kubernetes为提交的PersistentVolumeClaim自动配置存储。或者,可以通过Kubernetes手动创建和管理卷(PVs),或直接使用heketi-cli中的卷。
参考[gluster-kubernetes hello world example](https://github.com/gluster/gluster-kubernetes/blob/master/docs/examples/hello_world/README.md)
获取关于 storageClass 的更多信息.
# 我的示例(非翻译部分内容)
* topology文件:我的例子(3个节点,ubuntu-1(192.168.5.191),ubuntu-2(192.168.5.192),ubuntu-3(192.168.5.193),每个节点2个磁盘用来做存储(sdb,sdc))
```bash
# cat topology-sample.json
```
```json
{
"clusters": [
{
"nodes": [
{
"node": {
"hostnames": {
"manage": [
"ubuntu-1"
],
"storage": [
"192.168.5.191"
]
},
"zone": 1
},
"devices": [
"/dev/sdb",
"/dev/sdc"
]
},
{
"node": {
"hostnames": {
"manage": [
"ubuntu-2"
],
"storage": [
"192.168.5.192"
]
},
"zone": 1
},
"devices": [
"/dev/sdb",
"/dev/sdc"
]
},
{
"node": {
"hostnames": {
"manage": [
"ubuntu-3"
],
"storage": [
"192.168.5.193"
]
},
"zone": 1
},
"devices": [
"/dev/sdb",
"/dev/sdc"
]
}
]
}
]
}
```
* 确认glusterfs和heketi的pod运行正常
```bash
# kubectl get pod
NAME READY STATUS RESTARTS AGE
glusterfs-gf5zc 1/1 Running 2 8h
glusterfs-ngc55 1/1 Running 2 8h
glusterfs-zncjs 1/1 Running 0 2h
heketi-5c8ffcc756-x9gnv 1/1 Running 5 7h
```
* StorageClass yaml文件示例
```bash
# cat storage-class-slow.yaml
```
```yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: slow #-------------SC的名字
provisioner: kubernetes.io/glusterfs
parameters:
resturl: "http://10.103.98.75:8080" #-------------heketi service的cluster ip 和端口
restuser: "admin" #-------------随便填,因为没有启用鉴权模式
gidMin: "40000"
gidMax: "50000"
volumetype: "replicate:3" #-------------申请的默认为3副本模式
```
* PVC举例
```bash
# cat pvc-sample.yaml
```
```yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: myclaim
annotations:
volume.beta.kubernetes.io/storage-class: "slow" #-------------sc的名字,需要与storageclass的名字一致
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
```
查看创建的pvc和pv
```bash
# kubectl get pvc|grep myclaim
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
myclaim Bound pvc-e98e9117-3ed7-11e8-b61d-08002795cb26 1Gi RWO slow 28s
# kubectl get pv|grep myclaim
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-e98e9117-3ed7-11e8-b61d-08002795cb26 1Gi RWO Delete Bound default/myclaim slow 1m
```
* 可以将slow的sc设置为默认,这样平台分配存储的时候可以自动从glusterfs集群分配pv
```bash
# kubectl patch storageclass slow -p '{"metadata": {"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'
storageclass.storage.k8s.io "slow" patched
# kubectl get sc
NAME PROVISIONER AGE
default fuseim.pri/ifs 1d
slow (default) kubernetes.io/glusterfs 6h
```
# 容量限额测试
已经通过Helm 部署的一个mysql2 实例,使用存储2G,信息查看如下:
```bash
# helm list
NAME REVISION UPDATED STATUS CHART NAMESPACE
mysql2 1 Thu Apr 12 15:27:11 2018 DEPLOYED mysql-0.3.7 default
```
查看PVC和PV,大小2G,mysql2-mysql
```bash
# kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
mysql2-mysql Bound pvc-ea4ae3e0-3e22-11e8-8bb6-08002795cb26 2Gi RWO slow 19h
# kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-ea4ae3e0-3e22-11e8-8bb6-08002795cb26 2Gi RWO Delete Bound default/mysql2-mysql slow 19h
```
查看mysql的pod
```bash
# kubectl get pod|grep mysql2
mysql2-mysql-56d64f5b77-j2v84 1/1 Running 2 19h
```
进入mysql所在容器
```bash
# kubectl exec -it mysql2-mysql-56d64f5b77-j2v84 /bin/bash
```
查看挂载路径,查看挂载信息
```bash
root@mysql2-mysql-56d64f5b77-j2v84:/#cd /var/lib/mysql
root@mysql2-mysql-56d64f5b77-j2v84:/var/lib/mysql#
root@mysql2-mysql-56d64f5b77-j2v84:/var/lib/mysql# df -h
Filesystem Size Used Avail Use% Mounted on
none 48G 9.2G 37G 21% /
tmpfs 1.5G 0 1.5G 0% /dev
tmpfs 1.5G 0 1.5G 0% /sys/fs/cgroup
/dev/mapper/ubuntu--1--vg-root 48G 9.2G 37G 21% /etc/hosts
shm 64M 0 64M 0% /dev/shm
192.168.5.191:vol_2c2227ee65b64a0225aa9bce848a9925 2.0G 264M 1.8G 13% /var/lib/mysql
tmpfs 1.5G 12K 1.5G 1% /run/secrets/kubernetes.io/serviceaccount
tmpfs 1.5G 0 1.5G 0% /sys/firmware
```
使用dd写入数据,写入一段时间以后,空间满了,会报错(报错信息有bug,不是报空间满了,而是报文件系统只读,应该是glusterfs和docker配合的问题)
```bash
root@mysql2-mysql-56d64f5b77-j2v84:/var/lib/mysql# dd if=/dev/zero of=test.img bs=8M count=300
dd: error writing 'test.img': Read-only file system
dd: closing output file 'test.img': Input/output error
```
查看写满以后的文件大小
```bash
root@mysql2-mysql-56d64f5b77-j2v84:/var/lib/mysql# ls -l
total 2024662
-rw-r----- 1 mysql mysql 56 Apr 12 07:27 auto.cnf
-rw-r----- 1 mysql mysql 1329 Apr 12 07:27 ib_buffer_pool
-rw-r----- 1 mysql mysql 50331648 Apr 12 12:05 ib_logfile0
-rw-r----- 1 mysql mysql 50331648 Apr 12 07:27 ib_logfile1
-rw-r----- 1 mysql mysql 79691776 Apr 12 12:05 ibdata1
-rw-r----- 1 mysql mysql 12582912 Apr 12 12:05 ibtmp1
drwxr-s--- 2 mysql mysql 8192 Apr 12 07:27 mysql
drwxr-s--- 2 mysql mysql 8192 Apr 12 07:27 performance_schema
drwxr-s--- 2 mysql mysql 8192 Apr 12 07:27 sys
-rw-r--r-- 1 root mysql 1880887296 Apr 13 02:47 test.img
```
查看挂载信息(挂载信息显示bug,应该是glusterfs的bug)
```bash
root@mysql2-mysql-56d64f5b77-j2v84:/var/lib/mysql# df -h
Filesystem Size Used Avail Use% Mounted on
none 48G 9.2G 37G 21% /
tmpfs 1.5G 0 1.5G 0% /dev
tmpfs 1.5G 0 1.5G 0% /sys/fs/cgroup
/dev/mapper/ubuntu--1--vg-root 48G 9.2G 37G 21% /etc/hosts
shm 64M 0 64M 0% /dev/shm
192.168.5.191:vol_2c2227ee65b64a0225aa9bce848a9925 2.0G -16E 0 100% /var/lib/mysql
tmpfs 1.5G 12K 1.5G 1% /run/secrets/kubernetes.io/serviceaccount
tmpfs 1.5G 0 1.5G 0% /sys/firmware
```
查看文件夹大小,为2G
```bash
# du -h
25M ./mysql
825K ./performance_schema
496K ./sys
2.0G .
```
如上说明glusterfs的限额作用是起效的,限制在2G的空间大小。
- 序言
- 云原生
- 云原生(Cloud Native)的定义
- CNCF - 云原生计算基金会简介
- CNCF章程
- 云原生的设计哲学
- Play with Kubernetes
- 快速部署一个云原生本地实验环境
- Kubernetes与云原生应用概览
- 云原生应用之路——从Kubernetes到Cloud Native
- 云原生编程语言
- 云原生编程语言Ballerina
- 云原生编程语言Pulumi
- 云原生的未来
- Kubernetes架构
- 设计理念
- Etcd解析
- 开放接口
- CRI - Container Runtime Interface(容器运行时接口)
- CNI - Container Network Interface(容器网络接口)
- CSI - Container Storage Interface(容器存储接口)
- Kubernetes中的网络
- Kubernetes中的网络解析——以flannel为例
- Kubernetes中的网络解析——以calico为例
- 具备API感知的网络和安全性管理开源软件Cilium
- Cilium架构设计与概念解析
- 资源对象与基本概念解析
- Pod状态与生命周期管理
- Pod概览
- Pod解析
- Init容器
- Pause容器
- Pod安全策略
- Pod的生命周期
- Pod Hook
- Pod Preset
- Pod中断与PDB(Pod中断预算)
- 集群资源管理
- Node
- Namespace
- Label
- Annotation
- Taint和Toleration(污点和容忍)
- 垃圾收集
- 控制器
- Deployment
- StatefulSet
- DaemonSet
- ReplicationController和ReplicaSet
- Job
- CronJob
- Horizontal Pod Autoscaling
- 自定义指标HPA
- 准入控制器(Admission Controller)
- 服务发现
- Service
- Ingress
- Traefik Ingress Controller
- 身份与权限控制
- ServiceAccount
- RBAC——基于角色的访问控制
- NetworkPolicy
- 存储
- Secret
- ConfigMap
- ConfigMap的热更新
- Volume
- Persistent Volume(持久化卷)
- Storage Class
- 本地持久化存储
- 集群扩展
- 使用自定义资源扩展API
- 使用CRD扩展Kubernetes API
- Aggregated API Server
- APIService
- Service Catalog
- 资源调度
- QoS(服务质量等级)
- 用户指南
- 资源对象配置
- 配置Pod的liveness和readiness探针
- 配置Pod的Service Account
- Secret配置
- 管理namespace中的资源配额
- 命令使用
- Docker用户过度到kubectl命令行指南
- kubectl命令概览
- kubectl命令技巧大全
- 使用etcdctl访问kubernetes数据
- 集群安全性管理
- 管理集群中的TLS
- kubelet的认证授权
- TLS bootstrap
- 创建用户认证授权的kubeconfig文件
- IP伪装代理
- 使用kubeconfig或token进行用户身份认证
- Kubernetes中的用户与身份认证授权
- Kubernetes集群安全性配置最佳实践
- 访问Kubernetes集群
- 访问集群
- 使用kubeconfig文件配置跨集群认证
- 通过端口转发访问集群中的应用程序
- 使用service访问群集中的应用程序
- 从外部访问Kubernetes中的Pod
- Cabin - Kubernetes手机客户端
- Kubernetic - Kubernetes桌面客户端
- Kubernator - 更底层的Kubernetes UI
- 在Kubernetes中开发部署应用
- 适用于kubernetes的应用开发部署流程
- 迁移传统应用到Kubernetes中——以Hadoop YARN为例
- 最佳实践概览
- 在CentOS上部署Kubernetes集群
- 创建TLS证书和秘钥
- 创建kubeconfig文件
- 创建高可用etcd集群
- 安装kubectl命令行工具
- 部署master节点
- 安装flannel网络插件
- 部署node节点
- 安装kubedns插件
- 安装dashboard插件
- 安装heapster插件
- 安装EFK插件
- 生产级的Kubernetes简化管理工具kubeadm
- 使用kubeadm在Ubuntu Server 16.04上快速构建测试集群
- 服务发现与负载均衡
- 安装Traefik ingress
- 分布式负载测试
- 网络和集群性能测试
- 边缘节点配置
- 安装Nginx ingress
- 安装配置DNS
- 安装配置Kube-dns
- 安装配置CoreDNS
- 运维管理
- Master节点高可用
- 服务滚动升级
- 应用日志收集
- 配置最佳实践
- 集群及应用监控
- 数据持久化问题
- 管理容器的计算资源
- 集群联邦
- 存储管理
- GlusterFS
- 使用GlusterFS做持久化存储
- 使用Heketi作为Kubernetes的持久存储GlusterFS的external provisioner
- 在OpenShift中使用GlusterFS做持久化存储
- GlusterD-2.0
- Ceph
- 用Helm托管安装Ceph集群并提供后端存储
- 使用Ceph做持久化存储
- 使用rbd-provisioner提供rbd持久化存储
- OpenEBS
- 使用OpenEBS做持久化存储
- Rook
- NFS
- 利用NFS动态提供Kubernetes后端存储卷
- 集群与应用监控
- Heapster
- 使用Heapster获取集群和对象的metric数据
- Prometheus
- 使用Prometheus监控kubernetes集群
- Prometheus查询语言PromQL使用说明
- 使用Vistio监控Istio服务网格中的流量
- 分布式跟踪
- OpenTracing
- 服务编排管理
- 使用Helm管理Kubernetes应用
- 构建私有Chart仓库
- 持续集成与发布
- 使用Jenkins进行持续集成与发布
- 使用Drone进行持续集成与发布
- 更新与升级
- 手动升级Kubernetes集群
- 升级dashboard
- 领域应用概览
- 微服务架构
- 微服务中的服务发现
- 使用Java构建微服务并发布到Kubernetes平台
- Spring Boot快速开始指南
- Service Mesh 服务网格
- 企业级服务网格架构
- Service Mesh基础
- Service Mesh技术对比
- 采纳和演进
- 定制和集成
- 总结
- Istio
- 安装并试用Istio service mesh
- 配置请求的路由规则
- 安装和拓展Istio service mesh
- 集成虚拟机
- Istio中sidecar的注入规范及示例
- 如何参与Istio社区及注意事项
- Istio教程
- Istio免费学习资源汇总
- 深入理解Istio Service Mesh中的Envoy Sidecar注入与流量劫持
- 深入理解Istio Service Mesh中的Envoy Sidecar代理的路由转发
- Linkerd
- Linkerd 使用指南
- Conduit
- Condiut概览
- 安装Conduit
- Envoy
- Envoy的架构与基本术语
- Envoy作为前端代理
- Envoy mesh教程
- SOFAMesh
- SOFAMesh中的Dubbo on x-protocol
- SOFAMosn
- 使用 SOFAMosn 构建 SOFAMesh
- 大数据
- Spark standalone on Kubernetes
- 运行支持Kubernetes原生调度的Spark程序
- Serverless架构
- 理解Serverless
- FaaS-函数即服务
- OpenFaaS快速入门指南
- 边缘计算
- 人工智能