# 安装kubedns插件
官方的yaml文件目录:`kubernetes/cluster/addons/dns`。
该插件直接使用kubernetes部署,官方的配置文件中包含以下镜像:
gcr.io/google_containers/k8s-dns-dnsmasq-nanny-amd64:1.14.1
gcr.io/google_containers/k8s-dns-kube-dns-amd64:1.14.1
gcr.io/google_containers/k8s-dns-sidecar-amd64:1.14.1
我clone了上述镜像,上传到我的私有镜像仓库:
```
harbor-001.jimmysong.io/library/k8s-dns-dnsmasq-nanny-amd64:1.14.1
harbor-001.jimmysong.io/library/k8s-dns-kube-dns-amd64:1.14.1
harbor-001.jimmysong.io/library/k8s-dns-sidecar-amd64:1.14.1
```
同时上传了一份到时速云备份:
```
index.tenxcloud.com/jimmy/k8s-dns-dnsmasq-nanny-amd64:1.14.1
index.tenxcloud.com/jimmy/k8s-dns-kube-dns-amd64:1.14.1
index.tenxcloud.com/jimmy/k8s-dns-sidecar-amd64:1.14.1
```
以下yaml配置文件中使用的是私有镜像仓库中的镜像。
```
kubedns-cm.yaml
kubedns-sa.yaml
kubedns-controller.yaml
kubedns-svc.yaml
```
已经修改好的 yaml 文件见:[../manifests/kubedns](https://github.com/rootsongjc/kubernetes-handbook/blob/master/manifests/kubedns)
## 系统预定义的 RoleBinding
预定义的 RoleBinding `system:kube-dns` 将 kube-system 命名空间的 `kube-dns` ServiceAccount 与 `system:kube-dns` Role 绑定, 该 Role 具有访问 kube-apiserver DNS 相关 API 的权限;
```Bash
$ kubectl get clusterrolebindings system:kube-dns -o yaml
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
annotations:
rbac.authorization.kubernetes.io/autoupdate: "true"
creationTimestamp: 2017-04-11T11:20:42Z
labels:
kubernetes.io/bootstrapping: rbac-defaults
name: system:kube-dns
resourceVersion: "58"
selfLink: /apis/rbac.authorization.k8s.io/v1beta1/clusterrolebindingssystem%3Akube-dns
uid: e61f4d92-1ea8-11e7-8cd7-f4e9d49f8ed0
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:kube-dns
subjects:
- kind: ServiceAccount
name: kube-dns
namespace: kube-system
```
`kubedns-controller.yaml` 中定义的 Pods 时使用了 `kubedns-sa.yaml` 文件定义的 `kube-dns` ServiceAccount,所以具有访问 kube-apiserver DNS 相关 API 的权限。
## 配置 kube-dns ServiceAccount
无需修改。
## 配置 `kube-dns` 服务
``` bash
$ diff kubedns-svc.yaml.base kubedns-svc.yaml
30c30
< clusterIP: __PILLAR__DNS__SERVER__
---
> clusterIP: 10.254.0.2
```
+ spec.clusterIP = 10.254.0.2,即明确指定了 kube-dns Service IP,这个 IP 需要和 kubelet 的 `--cluster-dns` 参数值一致;
## 配置 `kube-dns` Deployment
``` bash
$ diff kubedns-controller.yaml.base kubedns-controller.yaml
58c58
< image: gcr.io/google_containers/k8s-dns-kube-dns-amd64:1.14.1
---
> image: harbor-001.jimmysong.io/library/k8s-dns-kube-dns-amd64:v1.14.1
88c88
< - --domain=__PILLAR__DNS__DOMAIN__.
---
> - --domain=cluster.local.
92c92
< __PILLAR__FEDERATIONS__DOMAIN__MAP__
---
> #__PILLAR__FEDERATIONS__DOMAIN__MAP__
110c110
< image: gcr.io/google_containers/k8s-dns-dnsmasq-nanny-amd64:1.14.1
---
> image: harbor-001.jimmysong.io/library/k8s-dns-dnsmasq-nanny-amd64:v1.14.1
129c129
< - --server=/__PILLAR__DNS__DOMAIN__/127.0.0.1#10053
---
> - --server=/cluster.local./127.0.0.1#10053
148c148
< image: gcr.io/google_containers/k8s-dns-sidecar-amd64:1.14.1
---
> image: harbor-001.jimmysong.io/library/k8s-dns-sidecar-amd64:v1.14.1
161,162c161,162
< - --probe=kubedns,127.0.0.1:10053,kubernetes.default.svc.__PILLAR__DNS__DOMAIN__,5,A
< - --probe=dnsmasq,127.0.0.1:53,kubernetes.default.svc.__PILLAR__DNS__DOMAIN__,5,A
---
> - --probe=kubedns,127.0.0.1:10053,kubernetes.default.svc.cluster.local.,5,A
> - --probe=dnsmasq,127.0.0.1:53,kubernetes.default.svc.cluster.local.,5,A
```
+ 使用系统已经做了 RoleBinding 的 `kube-dns` ServiceAccount,该账户具有访问 kube-apiserver DNS 相关 API 的权限;
## 执行所有定义文件
``` bash
$ pwd
/root/kubedns
$ ls *.yaml
kubedns-cm.yaml kubedns-controller.yaml kubedns-sa.yaml kubedns-svc.yaml
$ kubectl create -f .
```
## 检查 kubedns 功能
新建一个 Deployment
``` bash
$ cat >> my-nginx.yaml << EOF
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: my-nginx
spec:
replicas: 2
template:
metadata:
labels:
run: my-nginx
spec:
containers:
- name: my-nginx
image: harbor-001.jimmysong.io/library/nginx:1.9
ports:
- containerPort: 80
EOF
$ kubectl create -f my-nginx.yaml
```
Export 该 Deployment, 生成 `my-nginx` 服务
``` bash
$ kubectl expose deploy my-nginx
$ kubectl get services --all-namespaces |grep my-nginx
default my-nginx 10.254.179.239 <none> 80/TCP 42m
```
创建另一个 Pod,查看 `/etc/resolv.conf` 是否包含 `kubelet` 配置的 `--cluster-dns` 和 `--cluster-domain`,是否能够将服务 `my-nginx` 解析到 Cluster IP `10.254.179.239`。
``` bash
$ kubectl create -f nginx-pod.yaml
$ kubectl exec nginx -i -t -- /bin/bash
root@nginx:/# cat /etc/resolv.conf
nameserver 10.254.0.2
search default.svc.cluster.local. svc.cluster.local. cluster.local. jimmysong.io
options ndots:5
root@nginx:/# ping my-nginx
PING my-nginx.default.svc.cluster.local (10.254.179.239): 56 data bytes
76 bytes from 119.147.223.109: Destination Net Unreachable
^C--- my-nginx.default.svc.cluster.local ping statistics ---
root@nginx:/# ping kubernetes
PING kubernetes.default.svc.cluster.local (10.254.0.1): 56 data bytes
^C--- kubernetes.default.svc.cluster.local ping statistics ---
11 packets transmitted, 0 packets received, 100% packet loss
root@nginx:/# ping kube-dns.kube-system.svc.cluster.local
PING kube-dns.kube-system.svc.cluster.local (10.254.0.2): 56 data bytes
^C--- kube-dns.kube-system.svc.cluster.local ping statistics ---
6 packets transmitted, 0 packets received, 100% packet loss
```
从结果来看,service名称可以正常解析。
**注意**:直接ping ClusterIP是ping不通的,ClusterIP是根据**IPtables**路由到服务的endpoint上,只有结合ClusterIP加端口才能访问到对应的服务。
- 序言
- 云原生
- 云原生(Cloud Native)的定义
- CNCF - 云原生计算基金会简介
- CNCF章程
- 云原生的设计哲学
- Play with Kubernetes
- 快速部署一个云原生本地实验环境
- Kubernetes与云原生应用概览
- 云原生应用之路——从Kubernetes到Cloud Native
- 云原生编程语言
- 云原生编程语言Ballerina
- 云原生编程语言Pulumi
- 云原生的未来
- Kubernetes架构
- 设计理念
- Etcd解析
- 开放接口
- CRI - Container Runtime Interface(容器运行时接口)
- CNI - Container Network Interface(容器网络接口)
- CSI - Container Storage Interface(容器存储接口)
- Kubernetes中的网络
- Kubernetes中的网络解析——以flannel为例
- Kubernetes中的网络解析——以calico为例
- 具备API感知的网络和安全性管理开源软件Cilium
- Cilium架构设计与概念解析
- 资源对象与基本概念解析
- Pod状态与生命周期管理
- Pod概览
- Pod解析
- Init容器
- Pause容器
- Pod安全策略
- Pod的生命周期
- Pod Hook
- Pod Preset
- Pod中断与PDB(Pod中断预算)
- 集群资源管理
- Node
- Namespace
- Label
- Annotation
- Taint和Toleration(污点和容忍)
- 垃圾收集
- 控制器
- Deployment
- StatefulSet
- DaemonSet
- ReplicationController和ReplicaSet
- Job
- CronJob
- Horizontal Pod Autoscaling
- 自定义指标HPA
- 准入控制器(Admission Controller)
- 服务发现
- Service
- Ingress
- Traefik Ingress Controller
- 身份与权限控制
- ServiceAccount
- RBAC——基于角色的访问控制
- NetworkPolicy
- 存储
- Secret
- ConfigMap
- ConfigMap的热更新
- Volume
- Persistent Volume(持久化卷)
- Storage Class
- 本地持久化存储
- 集群扩展
- 使用自定义资源扩展API
- 使用CRD扩展Kubernetes API
- Aggregated API Server
- APIService
- Service Catalog
- 资源调度
- QoS(服务质量等级)
- 用户指南
- 资源对象配置
- 配置Pod的liveness和readiness探针
- 配置Pod的Service Account
- Secret配置
- 管理namespace中的资源配额
- 命令使用
- Docker用户过度到kubectl命令行指南
- kubectl命令概览
- kubectl命令技巧大全
- 使用etcdctl访问kubernetes数据
- 集群安全性管理
- 管理集群中的TLS
- kubelet的认证授权
- TLS bootstrap
- 创建用户认证授权的kubeconfig文件
- IP伪装代理
- 使用kubeconfig或token进行用户身份认证
- Kubernetes中的用户与身份认证授权
- Kubernetes集群安全性配置最佳实践
- 访问Kubernetes集群
- 访问集群
- 使用kubeconfig文件配置跨集群认证
- 通过端口转发访问集群中的应用程序
- 使用service访问群集中的应用程序
- 从外部访问Kubernetes中的Pod
- Cabin - Kubernetes手机客户端
- Kubernetic - Kubernetes桌面客户端
- Kubernator - 更底层的Kubernetes UI
- 在Kubernetes中开发部署应用
- 适用于kubernetes的应用开发部署流程
- 迁移传统应用到Kubernetes中——以Hadoop YARN为例
- 最佳实践概览
- 在CentOS上部署Kubernetes集群
- 创建TLS证书和秘钥
- 创建kubeconfig文件
- 创建高可用etcd集群
- 安装kubectl命令行工具
- 部署master节点
- 安装flannel网络插件
- 部署node节点
- 安装kubedns插件
- 安装dashboard插件
- 安装heapster插件
- 安装EFK插件
- 生产级的Kubernetes简化管理工具kubeadm
- 使用kubeadm在Ubuntu Server 16.04上快速构建测试集群
- 服务发现与负载均衡
- 安装Traefik ingress
- 分布式负载测试
- 网络和集群性能测试
- 边缘节点配置
- 安装Nginx ingress
- 安装配置DNS
- 安装配置Kube-dns
- 安装配置CoreDNS
- 运维管理
- Master节点高可用
- 服务滚动升级
- 应用日志收集
- 配置最佳实践
- 集群及应用监控
- 数据持久化问题
- 管理容器的计算资源
- 集群联邦
- 存储管理
- GlusterFS
- 使用GlusterFS做持久化存储
- 使用Heketi作为Kubernetes的持久存储GlusterFS的external provisioner
- 在OpenShift中使用GlusterFS做持久化存储
- GlusterD-2.0
- Ceph
- 用Helm托管安装Ceph集群并提供后端存储
- 使用Ceph做持久化存储
- 使用rbd-provisioner提供rbd持久化存储
- OpenEBS
- 使用OpenEBS做持久化存储
- Rook
- NFS
- 利用NFS动态提供Kubernetes后端存储卷
- 集群与应用监控
- Heapster
- 使用Heapster获取集群和对象的metric数据
- Prometheus
- 使用Prometheus监控kubernetes集群
- Prometheus查询语言PromQL使用说明
- 使用Vistio监控Istio服务网格中的流量
- 分布式跟踪
- OpenTracing
- 服务编排管理
- 使用Helm管理Kubernetes应用
- 构建私有Chart仓库
- 持续集成与发布
- 使用Jenkins进行持续集成与发布
- 使用Drone进行持续集成与发布
- 更新与升级
- 手动升级Kubernetes集群
- 升级dashboard
- 领域应用概览
- 微服务架构
- 微服务中的服务发现
- 使用Java构建微服务并发布到Kubernetes平台
- Spring Boot快速开始指南
- Service Mesh 服务网格
- 企业级服务网格架构
- Service Mesh基础
- Service Mesh技术对比
- 采纳和演进
- 定制和集成
- 总结
- Istio
- 安装并试用Istio service mesh
- 配置请求的路由规则
- 安装和拓展Istio service mesh
- 集成虚拟机
- Istio中sidecar的注入规范及示例
- 如何参与Istio社区及注意事项
- Istio教程
- Istio免费学习资源汇总
- 深入理解Istio Service Mesh中的Envoy Sidecar注入与流量劫持
- 深入理解Istio Service Mesh中的Envoy Sidecar代理的路由转发
- Linkerd
- Linkerd 使用指南
- Conduit
- Condiut概览
- 安装Conduit
- Envoy
- Envoy的架构与基本术语
- Envoy作为前端代理
- Envoy mesh教程
- SOFAMesh
- SOFAMesh中的Dubbo on x-protocol
- SOFAMosn
- 使用 SOFAMosn 构建 SOFAMesh
- 大数据
- Spark standalone on Kubernetes
- 运行支持Kubernetes原生调度的Spark程序
- Serverless架构
- 理解Serverless
- FaaS-函数即服务
- OpenFaaS快速入门指南
- 边缘计算
- 人工智能