# docker用户过度到kubectl命令行指南
对于没有使用过 kubernetes 的 docker 用户,如何快速掌握 kubectl 命令?
在本文中,我们将向 docker-cli 用户介绍 Kubernetes 命令行如何与 api 进行交互。该命令行工具——kubectl,被设计成 docker-cli 用户所熟悉的样子,但是它们之间又存在一些必要的差异。该文档将向您展示每个 docker 子命令和 kubectl 与其等效的命令。
在使用 kubernetes 集群的时候,docker 命令通常情况是不需要用到的,只有在调试程序或者容器的时候用到,我们基本上使用 kubectl 命令即可,所以在操作 kubernetes 的时候我们抛弃原先使用 docker 时的一些观念。
#### docker run
如何运行一个 nginx Deployment 并将其暴露出来? 查看 [kubectl run](https://kubernetes.io/docs/user-guide/kubectl/#run) 。
使用 docker 命令:
```bash
$ docker run -d --restart=always -e DOMAIN=cluster --name nginx-app -p 80:80 nginx
a9ec34d9878748d2f33dc20cb25c714ff21da8d40558b45bfaec9955859075d0
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
a9ec34d98787 nginx "nginx -g 'daemon of 2 seconds ago Up 2 seconds 0.0.0.0:80->80/tcp, 443/tcp nginx-app
```
使用 kubectl 命令:
```bash
# start the pod running nginx
$ kubectl run --image=nginx nginx-app --port=80 --env="DOMAIN=cluster"
deployment "nginx-app" created
```
在大于等于 1.2 版本 Kubernetes 集群中,使用`kubectl run` 命令将创建一个名为 "nginx-app" 的 Deployment。如果您运行的是老版本,将会创建一个 replication controller。 如果您想沿用旧的行为,使用 `--generation=run/v1` 参数,这样就会创建 replication controller。查看 [`kubectl run`](https://kubernetes.io/docs/user-guide/kubectl/#run) 获取更多详细信息。
```bash
# expose a port through with a service
$ kubectl expose deployment nginx-app --port=80 --name=nginx-http
service "nginx-http" exposed
```
在 kubectl 命令中,我们创建了一个 [Deployment](https://kubernetes.io/docs/concepts/workloads/controllers/deployment),这将保证有 N 个运行 nginx 的 pod(N 代表 spec 中声明的 replica 数,默认为 1)。我们还创建了一个 [service](https://kubernetes.io/docs/user-guide/services),使用 selector 匹配具有相应的 selector 的 Deployment。查看 [快速开始](https://kubernetes.io/docs/user-guide/quick-start) 获取更多信息。
默认情况下镜像会在后台运行,与`docker run -d ...` 类似,如果您想在前台运行,使用:
```bash
kubectl run [-i] [--tty] --attach <name> --image=<image>
```
与 `docker run ...` 不同的是,如果指定了 `--attach` ,我们将连接到 `stdin`,`stdout` 和 `stderr`,而不能控制具体连接到哪个输出流(`docker -a ...`)。
因为我们使用 Deployment 启动了容器,如果您终止了连接到的进程(例如 `ctrl-c`),容器将会重启,这跟 `docker run -it`不同。 如果想销毁该 Deployment(和它的 pod),您需要运行 `kubeclt delete deployment <name>`。
#### docker ps
如何列出哪些正在运行?查看 [kubectl get](https://kubernetes.io/docs/user-guide/kubectl/#get)。
使用 docker 命令:
```bash
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
a9ec34d98787 nginx "nginx -g 'daemon of About an hour ago Up About an hour 0.0.0.0:80->80/tcp, 443/tcp nginx-app
```
使用 kubectl 命令:
```bash
$ kubectl get po
NAME READY STATUS RESTARTS AGE
nginx-app-5jyvm 1/1 Running 0 1h
```
#### docker attach
如何连接到已经运行在容器中的进程?查看 [kubectl attach](https://kubernetes.io/docs/user-guide/kubectl/#attach)。
使用 docker 命令:
```bash
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
a9ec34d98787 nginx "nginx -g 'daemon of 8 minutes ago Up 8 minutes 0.0.0.0:80->80/tcp, 443/tcp nginx-app
$ docker attach a9ec34d98787
...
```
使用 kubectl 命令:
```bash
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-app-5jyvm 1/1 Running 0 10m
$ kubectl attach -it nginx-app-5jyvm
...
```
#### docker exec
如何在容器中执行命令?查看 [kubectl exec](https://kubernetes.io/docs/user-guide/kubectl/#exec)。
使用 docker 命令:
```bash
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
a9ec34d98787 nginx "nginx -g 'daemon of 8 minutes ago Up 8 minutes 0.0.0.0:80->80/tcp, 443/tcp nginx-app
$ docker exec a9ec34d98787 cat /etc/hostname
a9ec34d98787
```
使用 kubectl 命令:
```bash
$ kubectl get po
NAME READY STATUS RESTARTS AGE
nginx-app-5jyvm 1/1 Running 0 10m
$ kubectl exec nginx-app-5jyvm -- cat /etc/hostname
nginx-app-5jyvm
```
执行交互式命令怎么办?
使用 docker 命令:
```bash
$ docker exec -ti a9ec34d98787 /bin/sh
# exit
```
使用 kubectl 命令:
```bash
$ kubectl exec -ti nginx-app-5jyvm -- /bin/sh
# exit
```
更多信息请查看 [获取运行中容器的 Shell 环境](https://kubernetes.io/docs/tasks/kubectl/get-shell-running-container)。
#### docker logs
如何查看运行中进程的 stdout/stderr?查看 [kubectl logs](https://kubernetes.io/docs/user-guide/kubectl/#logs)。
使用 docker 命令:
```bash
$ docker logs -f a9e
192.168.9.1 - - [14/Jul/2015:01:04:02 +0000] "GET / HTTP/1.1" 200 612 "-" "curl/7.35.0" "-"
192.168.9.1 - - [14/Jul/2015:01:04:03 +0000] "GET / HTTP/1.1" 200 612 "-" "curl/7.35.0" "-"
```
使用 kubectl 命令:
```bash
$ kubectl logs -f nginx-app-zibvs
10.240.63.110 - - [14/Jul/2015:01:09:01 +0000] "GET / HTTP/1.1" 200 612 "-" "curl/7.26.0" "-"
10.240.63.110 - - [14/Jul/2015:01:09:02 +0000] "GET / HTTP/1.1" 200 612 "-" "curl/7.26.0" "-"
```
现在是时候提一下 pod 和容器之间的细微差别了;默认情况下如果 pod 中的进程退出 pod 也不会终止,相反它将会重启该进程。这类似于 docker run 时的 `--restart=always` 选项, 这是主要差别。在 docker 中,进程的每个调用的输出都是被连接起来的,但是对于 kubernetes,每个调用都是分开的。要查看以前在 kubernetes 中执行的输出,请执行以下操作:
```bash
$ kubectl logs --previous nginx-app-zibvs
10.240.63.110 - - [14/Jul/2015:01:09:01 +0000] "GET / HTTP/1.1" 200 612 "-" "curl/7.26.0" "-"
10.240.63.110 - - [14/Jul/2015:01:09:02 +0000] "GET / HTTP/1.1" 200 612 "-" "curl/7.26.0" "-"
```
查看 [记录和监控集群活动](https://kubernetes.io/docs/concepts/cluster-administration/logging) 获取更多信息。
#### docker stop 和 docker rm
如何停止和删除运行中的进程?查看 [kubectl delete](https://kubernetes.io/docs/user-guide/kubectl/#delete)。
使用 docker 命令:
```bash
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
a9ec34d98787 nginx "nginx -g 'daemon of 22 hours ago Up 22 hours 0.0.0.0:80->80/tcp, 443/tcp nginx-app
$ docker stop a9ec34d98787
a9ec34d98787
$ docker rm a9ec34d98787
a9ec34d98787
```
使用 kubectl 命令:
```bash
$ kubectl get deployment nginx-app
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx-app 1 1 1 1 2m
$ kubectl get po -l run=nginx-app
NAME READY STATUS RESTARTS AGE
nginx-app-2883164633-aklf7 1/1 Running 0 2m
$ kubectl delete deployment nginx-app
deployment "nginx-app" deleted
$ kubectl get po -l run=nginx-app
# Return nothing
```
请注意,我们不直接删除 pod。使用 kubectl 命令,我们要删除拥有该 pod 的 Deployment。如果我们直接删除pod,Deployment 将会重新创建该 pod。
#### docker login
在 kubectl 中没有对 `docker login` 的直接模拟。如果您有兴趣在私有镜像仓库中使用 Kubernetes,请参阅 [使用私有镜像仓库](https://kubernetes.io/docs/concepts/containers/images/#using-a-private-registry)。
#### docker version
如何查看客户端和服务端的版本?查看 [kubectl version](https://kubernetes.io/docs/user-guide/kubectl/#version)。
使用 docker 命令:
```bash
$ docker version
Client version: 1.7.0
Client API version: 1.19
Go version (client): go1.4.2
Git commit (client): 0baf609
OS/Arch (client): linux/amd64
Server version: 1.7.0
Server API version: 1.19
Go version (server): go1.4.2
Git commit (server): 0baf609
OS/Arch (server): linux/amd64
```
使用 kubectl 命令:
```bash
$ kubectl version
Client Version: version.Info{Major:"1", Minor:"6", GitVersion:"v1.6.9+a3d1dfa6f4335", GitCommit:"9b77fed11a9843ce3780f70dd251e92901c43072", GitTreeState:"dirty", BuildDate:"2017-08-29T20:32:58Z", OpenPaasKubernetesVersion:"v1.03.02", GoVersion:"go1.7.5", Compiler:"gc", Platform:"linux/amd64"}
Server Version: version.Info{Major:"1", Minor:"6", GitVersion:"v1.6.9+a3d1dfa6f4335", GitCommit:"9b77fed11a9843ce3780f70dd251e92901c43072", GitTreeState:"dirty", BuildDate:"2017-08-29T20:32:58Z", OpenPaasKubernetesVersion:"v1.03.02", GoVersion:"go1.7.5", Compiler:"gc", Platform:"linux/amd64"}
```
#### docker info
如何获取有关环境和配置的各种信息?查看 [kubectl cluster-info](https://kubernetes.io/docs/user-guide/kubectl/#cluster-info)。
使用 docker 命令:
```bash
$ docker info
Containers: 40
Images: 168
Storage Driver: aufs
Root Dir: /usr/local/google/docker/aufs
Backing Filesystem: extfs
Dirs: 248
Dirperm1 Supported: false
Execution Driver: native-0.2
Logging Driver: json-file
Kernel Version: 3.13.0-53-generic
Operating System: Ubuntu 14.04.2 LTS
CPUs: 12
Total Memory: 31.32 GiB
Name: k8s-is-fun.mtv.corp.google.com
ID: ADUV:GCYR:B3VJ:HMPO:LNPQ:KD5S:YKFQ:76VN:IANZ:7TFV:ZBF4:BYJO
WARNING: No swap limit support
```
使用 kubectl 命令:
```Bash
$ kubectl cluster-info
Kubernetes master is running at https://108.59.85.141
KubeDNS is running at https://108.59.85.141/api/v1/namespaces/kube-system/services/kube-dns/proxy
KubeUI is running at https://108.59.85.141/api/v1/namespaces/kube-system/services/kube-ui/proxy
Grafana is running at https://108.59.85.141/api/v1/namespaces/kube-system/services/monitoring-grafana/proxy
Heapster is running at https://108.59.85.141/api/v1/namespaces/kube-system/services/monitoring-heapster/proxy
InfluxDB is running at https://108.59.85.141/api/v1/namespaces/kube-system/services/monitoring-influxdb/proxy
```
原文地址:https://github.com/rootsongjc/kubernetes.github.io/blob/master/docs/user-guide/docker-cli-to-kubectl.md
- 序言
- 云原生
- 云原生(Cloud Native)的定义
- CNCF - 云原生计算基金会简介
- CNCF章程
- 云原生的设计哲学
- Play with Kubernetes
- 快速部署一个云原生本地实验环境
- Kubernetes与云原生应用概览
- 云原生应用之路——从Kubernetes到Cloud Native
- 云原生编程语言
- 云原生编程语言Ballerina
- 云原生编程语言Pulumi
- 云原生的未来
- Kubernetes架构
- 设计理念
- Etcd解析
- 开放接口
- CRI - Container Runtime Interface(容器运行时接口)
- CNI - Container Network Interface(容器网络接口)
- CSI - Container Storage Interface(容器存储接口)
- Kubernetes中的网络
- Kubernetes中的网络解析——以flannel为例
- Kubernetes中的网络解析——以calico为例
- 具备API感知的网络和安全性管理开源软件Cilium
- Cilium架构设计与概念解析
- 资源对象与基本概念解析
- Pod状态与生命周期管理
- Pod概览
- Pod解析
- Init容器
- Pause容器
- Pod安全策略
- Pod的生命周期
- Pod Hook
- Pod Preset
- Pod中断与PDB(Pod中断预算)
- 集群资源管理
- Node
- Namespace
- Label
- Annotation
- Taint和Toleration(污点和容忍)
- 垃圾收集
- 控制器
- Deployment
- StatefulSet
- DaemonSet
- ReplicationController和ReplicaSet
- Job
- CronJob
- Horizontal Pod Autoscaling
- 自定义指标HPA
- 准入控制器(Admission Controller)
- 服务发现
- Service
- Ingress
- Traefik Ingress Controller
- 身份与权限控制
- ServiceAccount
- RBAC——基于角色的访问控制
- NetworkPolicy
- 存储
- Secret
- ConfigMap
- ConfigMap的热更新
- Volume
- Persistent Volume(持久化卷)
- Storage Class
- 本地持久化存储
- 集群扩展
- 使用自定义资源扩展API
- 使用CRD扩展Kubernetes API
- Aggregated API Server
- APIService
- Service Catalog
- 资源调度
- QoS(服务质量等级)
- 用户指南
- 资源对象配置
- 配置Pod的liveness和readiness探针
- 配置Pod的Service Account
- Secret配置
- 管理namespace中的资源配额
- 命令使用
- Docker用户过度到kubectl命令行指南
- kubectl命令概览
- kubectl命令技巧大全
- 使用etcdctl访问kubernetes数据
- 集群安全性管理
- 管理集群中的TLS
- kubelet的认证授权
- TLS bootstrap
- 创建用户认证授权的kubeconfig文件
- IP伪装代理
- 使用kubeconfig或token进行用户身份认证
- Kubernetes中的用户与身份认证授权
- Kubernetes集群安全性配置最佳实践
- 访问Kubernetes集群
- 访问集群
- 使用kubeconfig文件配置跨集群认证
- 通过端口转发访问集群中的应用程序
- 使用service访问群集中的应用程序
- 从外部访问Kubernetes中的Pod
- Cabin - Kubernetes手机客户端
- Kubernetic - Kubernetes桌面客户端
- Kubernator - 更底层的Kubernetes UI
- 在Kubernetes中开发部署应用
- 适用于kubernetes的应用开发部署流程
- 迁移传统应用到Kubernetes中——以Hadoop YARN为例
- 最佳实践概览
- 在CentOS上部署Kubernetes集群
- 创建TLS证书和秘钥
- 创建kubeconfig文件
- 创建高可用etcd集群
- 安装kubectl命令行工具
- 部署master节点
- 安装flannel网络插件
- 部署node节点
- 安装kubedns插件
- 安装dashboard插件
- 安装heapster插件
- 安装EFK插件
- 生产级的Kubernetes简化管理工具kubeadm
- 使用kubeadm在Ubuntu Server 16.04上快速构建测试集群
- 服务发现与负载均衡
- 安装Traefik ingress
- 分布式负载测试
- 网络和集群性能测试
- 边缘节点配置
- 安装Nginx ingress
- 安装配置DNS
- 安装配置Kube-dns
- 安装配置CoreDNS
- 运维管理
- Master节点高可用
- 服务滚动升级
- 应用日志收集
- 配置最佳实践
- 集群及应用监控
- 数据持久化问题
- 管理容器的计算资源
- 集群联邦
- 存储管理
- GlusterFS
- 使用GlusterFS做持久化存储
- 使用Heketi作为Kubernetes的持久存储GlusterFS的external provisioner
- 在OpenShift中使用GlusterFS做持久化存储
- GlusterD-2.0
- Ceph
- 用Helm托管安装Ceph集群并提供后端存储
- 使用Ceph做持久化存储
- 使用rbd-provisioner提供rbd持久化存储
- OpenEBS
- 使用OpenEBS做持久化存储
- Rook
- NFS
- 利用NFS动态提供Kubernetes后端存储卷
- 集群与应用监控
- Heapster
- 使用Heapster获取集群和对象的metric数据
- Prometheus
- 使用Prometheus监控kubernetes集群
- Prometheus查询语言PromQL使用说明
- 使用Vistio监控Istio服务网格中的流量
- 分布式跟踪
- OpenTracing
- 服务编排管理
- 使用Helm管理Kubernetes应用
- 构建私有Chart仓库
- 持续集成与发布
- 使用Jenkins进行持续集成与发布
- 使用Drone进行持续集成与发布
- 更新与升级
- 手动升级Kubernetes集群
- 升级dashboard
- 领域应用概览
- 微服务架构
- 微服务中的服务发现
- 使用Java构建微服务并发布到Kubernetes平台
- Spring Boot快速开始指南
- Service Mesh 服务网格
- 企业级服务网格架构
- Service Mesh基础
- Service Mesh技术对比
- 采纳和演进
- 定制和集成
- 总结
- Istio
- 安装并试用Istio service mesh
- 配置请求的路由规则
- 安装和拓展Istio service mesh
- 集成虚拟机
- Istio中sidecar的注入规范及示例
- 如何参与Istio社区及注意事项
- Istio教程
- Istio免费学习资源汇总
- 深入理解Istio Service Mesh中的Envoy Sidecar注入与流量劫持
- 深入理解Istio Service Mesh中的Envoy Sidecar代理的路由转发
- Linkerd
- Linkerd 使用指南
- Conduit
- Condiut概览
- 安装Conduit
- Envoy
- Envoy的架构与基本术语
- Envoy作为前端代理
- Envoy mesh教程
- SOFAMesh
- SOFAMesh中的Dubbo on x-protocol
- SOFAMosn
- 使用 SOFAMosn 构建 SOFAMesh
- 大数据
- Spark standalone on Kubernetes
- 运行支持Kubernetes原生调度的Spark程序
- Serverless架构
- 理解Serverless
- FaaS-函数即服务
- OpenFaaS快速入门指南
- 边缘计算
- 人工智能