# Network Policy
网络策略说明一组 `Pod` 之间是如何被允许互相通信,以及如何与其它网络 Endpoint 进行通信。 `NetworkPolicy` 资源使用标签来选择 `Pod`,并定义了一些规则,这些规则指明允许什么流量进入到选中的 `Pod` 上。关于 Network Policy 的详细用法请参考 [Kubernetes 官网](https://kubernetes.io/docs/concepts/services-networking/network-policies/)。
Network Policy 的作用对象是 Pod,也可以应用到 Namespace 和集群的 Ingress、Egress 流量。Network Policy 是作用在 L3/4 层的,即限制的是对 IP 地址和端口的访问,如果需要对应用层做访问限制需要使用如 [Istio](https://istio.io/zh) 这类 Service Mesh。
## 前提条件
网络策略通过网络插件来实现,所以必须使用一种支持 `NetworkPolicy` 的网络方案(如 [calico](https://www.projectcalico.org/))—— 非 Controller 创建的资源,是不起作用的。
## 隔离的与未隔离的 Pod
默认 Pod 是未隔离的,它们可以从任何的源接收请求。 具有一个可以选择 Pod 的网络策略后,Pod 就会变成隔离的。 一旦 Namespace 中配置的网络策略能够选择一个特定的 Pod,这个 Pod 将拒绝任何该网络策略不允许的连接。(Namespace 中其它未被网络策略选中的 Pod 将继续接收所有流量)
## `NetworkPolicy` 资源
下面是一个 `NetworkPolicy` 的例子:
```yaml
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: test-network-policy
namespace: default
spec:
podSelector:
matchLabels:
role: db
policyTypes:
- Ingress
- Egress
ingress:
- from:
- ipBlock:
cidr: 172.17.0.0/16
except:
- 172.17.1.0/24
- namespaceSelector:
matchLabels:
project: myproject
- podSelector:
matchLabels:
role: frontend
ports:
- protocol: TCP
port: 6379
egress:
- to:
- ipBlock:
cidr: 10.0.0.0/24
ports:
- protocol: TCP
port: 5978
```
*将上面配置 POST 到 API Server 将不起任何作用,除非选择的网络方案支持网络策略。*
**必选字段**:像所有其它 Kubernetes 配置一样, `NetworkPolicy` 需要 `apiVersion`、`kind` 和 `metadata` 这三个字段,关于如何使用配置文件的基本信息,可以查看 [这里](https://kubernetes.io/docs/user-guide/configuring-containers) 和 [这里](https://kubernetes.io/docs/user-guide/working-with-resources)。
**spec**:`NetworkPolicy` [spec](https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status) 具有在给定 Namespace 中定义特定网络的全部信息。
**podSelector**:每个 `NetworkPolicy` 包含一个 `podSelector`,它可以选择一组应用了网络策略的 Pod。由于 `NetworkPolicy` 当前只支持定义 `ingress` 规则,这个 `podSelector` 实际上为该策略定义了一组 “目标Pod”。示例中的策略选择了标签为 “role=db” 的 Pod。一个空的 `podSelector` 选择了该 Namespace 中的所有 Pod。
**ingress**:每个`NetworkPolicy` 包含了一个白名单 `ingress` 规则列表。每个规则只允许能够匹配上 `from` 和 `ports`配置段的流量。示例策略包含了单个规则,它从这两个源中匹配在单个端口上的流量,第一个是通过`namespaceSelector` 指定的,第二个是通过 `podSelector` 指定的。
**egress**:每个`NetworkPolicy` 包含了一个白名单 `ingress` 规则列表。每个规则只允许能够匹配上 `to` 和 `ports`配置段的流量。示例策略包含了单个规则,它匹配目的地 `10.0.0.0/24` 单个端口的流量。
因此,上面示例的 NetworkPolicy:
1. 在 “default” Namespace中 隔离了标签 “role=db” 的 Pod(如果他们还没有被隔离)
2. 在 “default” Namespace中,允许任何具有 “role=frontend” 的 Pod,IP 范围在 172.17.0.0–172.17.0.255 和 172.17.2.0–172.17.255.255(整个 172.17.0.0/16 段, 172.17.1.0/24 除外)连接到标签为 “role=db” 的 Pod 的 TCP 端口 6379
3. 允许在 Namespace 中任何具有标签 “project=myproject” ,IP范围在10.0.0.0/24段的 Pod,连接到 “default” Namespace 中标签为 “role=db” 的 Pod 的 TCP 端口 5978
查看 [NetworkPolicy 入门指南](https://kubernetes.io/docs/getting-started-guides/network-policy/walkthrough)给出的更进一步的例子。
## 默认策略
通过创建一个可以选择所有 Pod 但不允许任何流量的 NetworkPolicy,你可以为一个 Namespace 创建一个 “默认的” 隔离策略,如下所示:
```yaml
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: default-deny
spec:
podSelector:
```
这确保了即使是没有被任何 NetworkPolicy 选中的 Pod,将仍然是被隔离的。
可选地,在 Namespace 中,如果你想允许所有的流量进入到所有的 Pod(即使已经添加了某些策略,使一些 Pod 被处理为 “隔离的”),你可以通过创建一个策略来显式地指定允许所有流量:
```yaml
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-all
spec:
podSelector:
ingress:
- {}
```
## 参考
- [Network Policies - k8smeetup.github.io](https://k8smeetup.github.io/docs/concepts/services-networking/network-policies/)
- [Network Policies - kubernetes.io](https://kubernetes.io/docs/concepts/services-networking/network-policies/)
- 序言
- 云原生
- 云原生(Cloud Native)的定义
- CNCF - 云原生计算基金会简介
- CNCF章程
- 云原生的设计哲学
- Play with Kubernetes
- 快速部署一个云原生本地实验环境
- Kubernetes与云原生应用概览
- 云原生应用之路——从Kubernetes到Cloud Native
- 云原生编程语言
- 云原生编程语言Ballerina
- 云原生编程语言Pulumi
- 云原生的未来
- Kubernetes架构
- 设计理念
- Etcd解析
- 开放接口
- CRI - Container Runtime Interface(容器运行时接口)
- CNI - Container Network Interface(容器网络接口)
- CSI - Container Storage Interface(容器存储接口)
- Kubernetes中的网络
- Kubernetes中的网络解析——以flannel为例
- Kubernetes中的网络解析——以calico为例
- 具备API感知的网络和安全性管理开源软件Cilium
- Cilium架构设计与概念解析
- 资源对象与基本概念解析
- Pod状态与生命周期管理
- Pod概览
- Pod解析
- Init容器
- Pause容器
- Pod安全策略
- Pod的生命周期
- Pod Hook
- Pod Preset
- Pod中断与PDB(Pod中断预算)
- 集群资源管理
- Node
- Namespace
- Label
- Annotation
- Taint和Toleration(污点和容忍)
- 垃圾收集
- 控制器
- Deployment
- StatefulSet
- DaemonSet
- ReplicationController和ReplicaSet
- Job
- CronJob
- Horizontal Pod Autoscaling
- 自定义指标HPA
- 准入控制器(Admission Controller)
- 服务发现
- Service
- Ingress
- Traefik Ingress Controller
- 身份与权限控制
- ServiceAccount
- RBAC——基于角色的访问控制
- NetworkPolicy
- 存储
- Secret
- ConfigMap
- ConfigMap的热更新
- Volume
- Persistent Volume(持久化卷)
- Storage Class
- 本地持久化存储
- 集群扩展
- 使用自定义资源扩展API
- 使用CRD扩展Kubernetes API
- Aggregated API Server
- APIService
- Service Catalog
- 资源调度
- QoS(服务质量等级)
- 用户指南
- 资源对象配置
- 配置Pod的liveness和readiness探针
- 配置Pod的Service Account
- Secret配置
- 管理namespace中的资源配额
- 命令使用
- Docker用户过度到kubectl命令行指南
- kubectl命令概览
- kubectl命令技巧大全
- 使用etcdctl访问kubernetes数据
- 集群安全性管理
- 管理集群中的TLS
- kubelet的认证授权
- TLS bootstrap
- 创建用户认证授权的kubeconfig文件
- IP伪装代理
- 使用kubeconfig或token进行用户身份认证
- Kubernetes中的用户与身份认证授权
- Kubernetes集群安全性配置最佳实践
- 访问Kubernetes集群
- 访问集群
- 使用kubeconfig文件配置跨集群认证
- 通过端口转发访问集群中的应用程序
- 使用service访问群集中的应用程序
- 从外部访问Kubernetes中的Pod
- Cabin - Kubernetes手机客户端
- Kubernetic - Kubernetes桌面客户端
- Kubernator - 更底层的Kubernetes UI
- 在Kubernetes中开发部署应用
- 适用于kubernetes的应用开发部署流程
- 迁移传统应用到Kubernetes中——以Hadoop YARN为例
- 最佳实践概览
- 在CentOS上部署Kubernetes集群
- 创建TLS证书和秘钥
- 创建kubeconfig文件
- 创建高可用etcd集群
- 安装kubectl命令行工具
- 部署master节点
- 安装flannel网络插件
- 部署node节点
- 安装kubedns插件
- 安装dashboard插件
- 安装heapster插件
- 安装EFK插件
- 生产级的Kubernetes简化管理工具kubeadm
- 使用kubeadm在Ubuntu Server 16.04上快速构建测试集群
- 服务发现与负载均衡
- 安装Traefik ingress
- 分布式负载测试
- 网络和集群性能测试
- 边缘节点配置
- 安装Nginx ingress
- 安装配置DNS
- 安装配置Kube-dns
- 安装配置CoreDNS
- 运维管理
- Master节点高可用
- 服务滚动升级
- 应用日志收集
- 配置最佳实践
- 集群及应用监控
- 数据持久化问题
- 管理容器的计算资源
- 集群联邦
- 存储管理
- GlusterFS
- 使用GlusterFS做持久化存储
- 使用Heketi作为Kubernetes的持久存储GlusterFS的external provisioner
- 在OpenShift中使用GlusterFS做持久化存储
- GlusterD-2.0
- Ceph
- 用Helm托管安装Ceph集群并提供后端存储
- 使用Ceph做持久化存储
- 使用rbd-provisioner提供rbd持久化存储
- OpenEBS
- 使用OpenEBS做持久化存储
- Rook
- NFS
- 利用NFS动态提供Kubernetes后端存储卷
- 集群与应用监控
- Heapster
- 使用Heapster获取集群和对象的metric数据
- Prometheus
- 使用Prometheus监控kubernetes集群
- Prometheus查询语言PromQL使用说明
- 使用Vistio监控Istio服务网格中的流量
- 分布式跟踪
- OpenTracing
- 服务编排管理
- 使用Helm管理Kubernetes应用
- 构建私有Chart仓库
- 持续集成与发布
- 使用Jenkins进行持续集成与发布
- 使用Drone进行持续集成与发布
- 更新与升级
- 手动升级Kubernetes集群
- 升级dashboard
- 领域应用概览
- 微服务架构
- 微服务中的服务发现
- 使用Java构建微服务并发布到Kubernetes平台
- Spring Boot快速开始指南
- Service Mesh 服务网格
- 企业级服务网格架构
- Service Mesh基础
- Service Mesh技术对比
- 采纳和演进
- 定制和集成
- 总结
- Istio
- 安装并试用Istio service mesh
- 配置请求的路由规则
- 安装和拓展Istio service mesh
- 集成虚拟机
- Istio中sidecar的注入规范及示例
- 如何参与Istio社区及注意事项
- Istio教程
- Istio免费学习资源汇总
- 深入理解Istio Service Mesh中的Envoy Sidecar注入与流量劫持
- 深入理解Istio Service Mesh中的Envoy Sidecar代理的路由转发
- Linkerd
- Linkerd 使用指南
- Conduit
- Condiut概览
- 安装Conduit
- Envoy
- Envoy的架构与基本术语
- Envoy作为前端代理
- Envoy mesh教程
- SOFAMesh
- SOFAMesh中的Dubbo on x-protocol
- SOFAMosn
- 使用 SOFAMosn 构建 SOFAMesh
- 大数据
- Spark standalone on Kubernetes
- 运行支持Kubernetes原生调度的Spark程序
- Serverless架构
- 理解Serverless
- FaaS-函数即服务
- OpenFaaS快速入门指南
- 边缘计算
- 人工智能